Norhuzaimin Julai
Universiti Malaysia Sarawak

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

The Analysis of Soft Error in C-Elements Norhuzaimin Julai; Ahmed M. A. Haidar; Abdul Rahman Kram
Indonesian Journal of Electrical Engineering and Computer Science Vol 10, No 3: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v10.i3.pp1013-1022

Abstract

Soft errors are a serious concern in state holders as it can cause temporarily malfunction of the circuit. C-element is one of the state holders that is used widely in the asynchronous circuit. In this paper, the investigation will focus on the vulnerability of two types of C-element towards soft errors. A framework has been proposed for the rate of error due to neutron spectrum energy that can cause failure in the state holder. Effective analysis has been conducted on two different C-elements at different nodes by using UMC90 nm technology and 180nm technology. Based on the vulnerability data, a method for assessing vulnerability on a different implementation of C-elements has been developed. From the obtained data, it can be concluded that SIL is more resistant towards soft errors.
A battery integrated multiple input DC-DC boost converter Azuka Affam; Yonis M. Yonis Buswig; Al-Khalid Hj Othman; Norhuzaimin Julai; Hani Albalawi
Bulletin of Electrical Engineering and Informatics Vol 12, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i2.4272

Abstract

In this paper, the proposed single boost converter aims to harness more than one renewable energy (RE) input source and achieve a high voltage gain. The interleaved technique combined with voltage multiplier (VM) cells, reduced inductor current and attained high voltage transfer ratio. The boost converter possesses two unidirectional input ports and a bidirectional input port that is connected to a battery storage. The duty ratios of the power and interleaving switches are used to regulate the output voltage of the proposed converter. Three operation modes are identified, and steady state analyses of the converter are presented and discussed. The converter can store excess energy in the battery during periods of abundance and deliver power to the loads when the RE sources are low or unavailable. In addition, the output voltage is higher than that of the conventional boost converter. The converter delivered 278 V from 12 V and 24 V dual input sources. The converter operation is simulated and verified using MATLAB/Simulink.