Adel Y. I. Ashyap
Universiti Tun Hussein Onn Malaysia (UTHM)

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

A wearable antenna based on fabric materials with circular polarization for Body-centric wireless communications Adel Y. I. Ashyap; Z. Z. Abidin; Samsul Haimi Dahlan; Shaharil Mohd Shah; Huda A. Majid; Yee See Khee; Norun Abdul Malek
Indonesian Journal of Electrical Engineering and Computer Science Vol 18, No 1: April 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v18.i1.pp335-342

Abstract

A compact and simple structure antenna for wearable application at 2.4 GHz is presented and studied. The felt fabric material is used in this paper due to its suitable thickness and dielectric constant. This material provides high flexibility which can be easily worn on a body and incorporated into our daily clothes. In view of the fact that the design will work on a moving person, therefore a circularly polarized antenna is desired to optimize the off-body communication link. The Cicular Polarization (CP) is achieved by introducing truncated corners on the patch. The antenna size is 60 × 60 × 2 mm3. The Axial Ratio (AR), the Front to Back Ratio (FRB) and the realized gain are 0.96 dB, 10.5 dB, and 4.62 dB, respectively indicating a good performance of the antenna at the desired frequency. Furthermore, the antenna was investigated when operating near the body. The obtained result shows that the design has performance similar to the case of free space. This is due to the present of the full ground plane that acts as a shielding between the antenna and body. Finally, the Specific Absorption Rate (SAR) is carried out and showed that the antenna has a level less than the limits fixed by the FCC standard. Therefore, the antenna could be useful for wearable applications.
Unorthodox technique in sensing with the metamaterial-based resonator sensor at millimetre frequencies Suhail Asghar Qureshi; Zuhairiah Zainal Abidin; Huda A. Majid; Adel Y. I. Ashyap; Bashar A. F. Esmail
Indonesian Journal of Electrical Engineering and Computer Science Vol 31, No 2: August 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v31.i2.pp785-793

Abstract

A metamaterial-based resonator is presented in this paper for liquid-sensing applications. The designed sensor operates at millimetre-wave (mm-w) frequencies, and it can characterise the samples that may possess identical characteristics. This paper relies on the extracted permittivity of the structure in the characterisation of the samples, mainly liquids. The sensor requires a very small amount of samples for sensing and it is used in distinguishing oil, ethanol, methanol, glycerol and water. A shift in the resonance frequency of about 200 MHz per unit increase in the epsilon value of samples was achieved. The oil sample showed the lowest value in the extracted permittivity value, while water showed the nearest to zero extracted permittivity. This relationship of variation in extracted permittivity parameter with the change in the sample’s epsilon value is found to be linear and reliable regardless of the change in thickness of the sample.