Titiek Yulianti
Indonesian Sweetener and Fibre Crops Research Institute

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Kenaf plant pest and disease detection using faster regional based convolutional neural network Alfita Rakhmandasari; Wayan Firdaus Mahmudy; Titiek Yulianti
Indonesian Journal of Electrical Engineering and Computer Science Vol 24, No 1: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v24.i1.pp198-207

Abstract

Kenaf plant is a fibre plant whose stem bark is taken to be used as raw material for making geo-textile, particleboard, pulp, fiber drain, fiber board, and paper. The presence of plant pests and diseases that attack causes crop production to decrease. The detection of pests and diseases by farmers may be a challenging task. The detection can be done using artificial intelligence-based method. Convolutional neural networks (CNNs) are one of the most popular neural network architectures and have been successfully implemented for image classification. However, the CNN method is still considered a long time in the process, so this method was developed into namely faster regional based convolution neural network (RCNN). As the selection of the input features largely determines the accuracy of the results, a pre-processing procedure is developed to transform the kenaf plant image into input features of faster RCNN. A computational experiment proves that the faster RCNN has a very short computation time by completing 10000 iterations in 3 hours compared to convolutional neural network (CNN) completing 100 iterations at the same time. Furthermore, Faster RCNN gets 77.50% detection accuracy and bounding box accuracy 96.74% while CNN gets 72.96% detection accuracy at 400 epochs. The results also prove that the selection of input features and its pre-processing procedure could produce a high accuracy of detection.