Joy Nnenna Eneh
University of Nigeria

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

A review of various image fusion types and transforms Ayodeji Olalekan Salau; Shruti Jain; Joy Nnenna Eneh
Indonesian Journal of Electrical Engineering and Computer Science Vol 24, No 3: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v24.i3.pp1515-1522

Abstract

Utilizing multiple views of an image is an important approach in digital photography, video editing, and medical image fusion applications. Image fusion (ImF) methods are used to improve an image's quality and remove noise from the image signal, resulting in a higher signal-to-noise ratio. A complete assessment of the literature on the different transform kinds, techniques, and rules utilized in ImF is presented in this paper. To assess the outcomes, a white flower image was fused using discrete wavelet transform (DWT) and discrete cosine transform (DCT) techniques. For validation of results, the red, green, blue (RGB) and intensity hue saturation (IHS) values of individual and fused images were evaluated. The results obtained from the fused images with the spatial IHS transform method give a remarkable performance. Furthermore, the results of the performance evaluation using DWT and DCT fusion techniques show that the same peak signal to noise ratio (PSNR) of 114.04 was achieved for both PSNR 1 and PSNR 2 for DCT, and different results were obtained for DWT. For signal to noise ratio (SNR), SNR 1 and SNR 2 achieved slightly similar values of 114.00 and 114.01 for DCT, while a SNR of 113.28 and 112.26 was achieved for SNR 1 and SNR 2 respectively.
Evaluation of Bernoulli Naive Bayes model for detection of distributed denial of service attacks Ayodeji Olalekan Salau; Tsehay Admassu Assegie; Adedeji Tomide Akindadelo; Joy Nnenna Eneh
Bulletin of Electrical Engineering and Informatics Vol 12, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i2.4020

Abstract

Distributed denial of service is a form of cyber-attack that involves sending several network traffic to a target system such as DHCP, domain name server (DNS), and HTTP server. The attack aims to exhaust computing resources such as memory and the processor of a target system by blocking the legitimate users from getting access to the service provided by the server. Network intrusion prevention ensures the security of a network and protects the server from such attacks. Thus, this paper presents a predicitive model that identifies distributed denial of service attacks (DDSA) using Bernoulli-Naive Bayes. The developed model is evaluated on the publicly available Kaggle dataset. The method is tested with a confusion matrix, receiver operating characteristics (ROC) curve, and accuracy to measure its performance. The experimental results show an 85.99% accuracy in detecting DDSA with the proposed method. Hence, Bernoulli-Naive Bayes-based method was found to be effective and significant for the protection of network servers from malicious attacks.