Mohamed Hamlich
University of Hassan II

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Hunting strategy for multi-robot based on wolf swarm algorithm and artificial potential field Oussama Hamed; Mohamed Hamlich; Mohamed Ennaji
Indonesian Journal of Electrical Engineering and Computer Science Vol 25, No 1: January 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v25.i1.pp159-171

Abstract

The cooperation and coordination in multi-robot systems is a popular topic in the field of robotics and artificial intelligence, thanks to its important role in solving problems that are better solved by several robots compared to a single robot. Cooperative hunting is one of the important problems that exist in many areas such as military and industry, requiring cooperation between robots in order to accomplish the hunting process effectively. This paper proposed a cooperative hunting strategy for a multi-robot system based on wolf swarm algorithm (WSA) and artificial potential field (APF) in order to hunt by several robots a dynamic target whose behavior is unexpected. The formation of the robots within the multi-robot system contains three types of roles: the leader, the follower, and the antagonist. Each role is characterized by a different cognitive behavior. The robots arrive at the hunting point accurately and rapidly while avoiding static and dynamic obstacles through the artificial potential field algorithm to hunt the moving target. Simulation results are given in this paper to demonstrate the validity and the effectiveness of the proposed strategy.
Product defect detection based on convolutional autoencoder and one-class classification Meryem Chaabi; Mohamed Hamlich; Moncef Garouani
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 12, No 2: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v12.i2.pp912-920

Abstract

To meet customer expectations and remain competitive, industrials try constantly to improve their quality control systems. There is hence increasing demand for adopting automatic defect detection solutions. However, the biggest issue in addressing such systems is the imbalanced aspect of industrial datasets. Often, defect-free samples far exceed the defected ones, due to continuous improvement approaches adopted by manufacturing companies. In this sense, we propose an automatic defect detection system based on one-class classification (OCC) since it involves only normal samples during training. It consists of three sub-models, first, a convolutional autoencoder serves as latent features extractor, the extracted features vectors are subsequently fed into the dimensionality reduction process by performing principal component analysis (PCA), then the reduced-dimensional data are used to train the one-class classifier support vector data description (SVDD). During the test phase, both normal and defected images are used. The first two stages of the trained model generate a low-dimensional features vector, whereas the SVDD classifies the new input, whether it is defect-free or defected. This approach is evaluated on the carpet images from the industrial inspection dataset MVTec anomaly detection (MVTec AD). During training, only normal images were used. The results showed that the proposed method outperforms the state-of-the-art methods.