Alaa Hussein Al‐Zuhairi
Department of Civil Engineering, Faculty of Engineering, University of Baghdad, 10071 Baghdad,

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Use of EB-CFRP to Improve Flexural Capacity of Unbonded Post-Tensioned Concrete Members Exposed to Partially Damaged Strands Hayder Qays Abbas; Alaa Hussein Al‐Zuhairi
Civil Engineering Journal Vol 8, No 6 (2022): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-06-014

Abstract

The study presents the performance of flexural strengthening of concrete members exposed to partially unbonded prestressing with a particular emphasis on the amount (0, 14.2, and 28.5%) of cut strands-symmetrical and asymmetrical damage. In addition to examining the influence of cut strands on the remaining capacity of post-tensioned unbonded members and the effectiveness of carbon fiber reinforced polymer laminates restoration, The investigated results on rectangular members subjected to a four-point static bending load based on the composition of the laminate affected the stress of the CFRP, the failure mode, and flexural strength and deflection are covered in this study. The experimental results revealed that the usage of CFRP laminates has a considerable impact on strand strain. In addition to that, the flexural stiffness of strengthened members becomes increasingly significant within the serviceability phases as the damaged strand ratios increase. The EB-CFRP laminates increased the flexural capacity by approximately 13%, which corresponds to strand damage of 14.28% and about 9.5% for 28.57% of strand damage, which represents one of the unique findings in this field. Additionally, semi-empirical equations for forecasting the actual strain of unbonded tendons were presented. The suggested equations are simple to solve and produce precise results. Doi: 10.28991/CEJ-2022-08-06-014 Full Text: PDF
Behavior of Post-Tensioned Concrete Girders Subject to Partially Strand Damage and Strengthened by NSM-CFRP Composites Abbas Jalil; Alaa Hussein Al‐Zuhairi
Civil Engineering Journal Vol 8, No 7 (2022): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-07-013

Abstract

Studies on the flexural behavior of post-tensioned beams subjected to strand damage and strengthened with near-surface mounted (NSM) technique using carbon fiber-reinforced polymer (CFRP) are limited and fail to examine the effect of CFRP laminates on strand strain and strengthening efficiency systematically. Furthermore, a design approach for UPC structures in existing design guidelines for FRP strengthening techniques is lacking. Hence, the behavior of post-tensioned beams strengthened with NSM-CFRP laminates after partial strand damage is investigated in this study. The testing program consists of seven post-tensioned beams strengthened by NSM-CFRP laminates with three partial strand damage ratios (14.3% symmetrical damage, 14.3% asymmetric damage, and 28.6% symmetrical damage). The experimental results showed that the use of CFRP laminates significantly increases the flexural capacity by up to 17.4 to 20.4%, corresponding to a strand damage ratio of 14.3 and 28.6%, respectively, enhances the stiffness, and reduces strand strain by up to 15.8 to 22.2%. However, the flexural stiffness of strengthened beams during serviceability phases is critical as strand damage ratios increase. Additionally, semi-empirical equations were proposed to predict the actual strain of unbonded strands whilst considering the effects of CFRP laminates. The suggested equations provide accurate predictions with little variance. Doi: 10.28991/CEJ-2022-08-07-013 Full Text: PDF