Claim Missing Document
Check
Articles

Found 1 Documents
Search

REDUCING THE CLOCKWISE-ALGORITHM TO k LENGTH CLASSES Marco Ripà
Journal of Fundamental Mathematics and Applications (JFMA) Vol 4, No 1 (2021)
Publisher : Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2111.898 KB) | DOI: 10.14710/jfma.v4i1.10106

Abstract

In the present paper, we consider an optimization problem related to the extension in k-dimensions of the well known 3x3 points problem by Sam Loyd. In particular, thanks to a variation of the so called “clockwise-algorithm”, we show how it is possible to visit all the 3^k points of the k-dimensional grid given by the Cartesian product of (0, 1, 2) using covering trails formed by h(k)=(3^k-1)/2 links who belong to k (Euclidean) length classes. We can do this under the additional constraint of allowing only turning points which belong to the set B(k):={(0, 3) x (0, 3) x ... x (0, 3)}.