Claim Missing Document
Check
Articles

Found 7 Documents
Search

KARAKTERISASI DAN BEBERAPA SIFAT RUANG CEC Erik Maurten Firdaus; Ade Ima Afifa Himayati
Journal of Fundamental Mathematics and Applications (JFMA) Vol 4, No 2 (2021)
Publisher : Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (993.678 KB) | DOI: 10.14710/jfma.v4i2.12199

Abstract

Abstract. In this paper, we define the notion of CEC spaces. We also study about acharacterization and some properties of CEC spaces such as hereditary, topologicalproperty, finite productive, and divisible.Abstrak. Di dalam tulisan ini, didefinisikan ruang CEC. Dibahas pula karakterisasidan beberapa sifat ruang CEC seperti menurun, sifat topologi, produk berhingga, dan terbagi.
Application of the Greedy Algorithm for Graph Coloring of the Grobogan Regency Map: Application of the Greedy Algorithm for Graph Coloring of the Grobogan Regency Map Ade Ima Afifa Himayati; Muhammad Adib Jauhari Dwi Putra; Erik Maurten Firdaus; Muhammad Faudzi Bahari
Eigen Mathematics Journal Vol. 5 No. 2 Desember 2022
Publisher : University of Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/emj.v5i2.149

Abstract

The district map in Grobogan Regency can be optimized using the Greedy algorithm. The point on the graph represents the district and the line represents two areas that are directly adjacent. Greedy Algorithm is one of the algorithms developed to solve the problem of graph coloring to be able to produce minimal colors that are used without having the same color in areas that are directly adjacent. Greedy’s algorithm uses a set of color candidates and solutions in its solution. Staining is done at the point with the greatest degree followed by an examination of the appropriateness of the color with the principle that no neighboring points have the same color. The resulting color is included in the solution set. The process is continued until all the dots have been colored. Regional coloring in Grobogan district produces four colors with a greedy algorithm as the minimum color solution obtained
PEWARNAAN GRAF PADA PETA WILAYAH KOTA SEMARANG DENGAN ALGORITMA GREEDY Ade Ima Afifa Himayati; Erik Maurten Firdaus; Findasari Findasari
JURNAL ILMU KOMPUTER DAN MATEMATIKA Vol 4, No 1 (2023): JURNAL ILMU KOMPUTER DAN MATEMATIKA
Publisher : Universitas Muhammadiyah Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26751/jikoma.v4i1.1788

Abstract

The coloring of the sub-districts in the city of Semarang can be optimized using the Greedy algorithm. Districts are assumed to be points and lines to connect two adjacent areas. Greedy Algorithm is a form of algorithm that has been developed to solve the problem of graph coloring so that it produces minimal colors that must be used without any bordering areas using the same color. Greedy's algorithm uses a set of color candidates and initialization of the solution is made. Staining is done at the first point with the greatest degree. Furthermore, the appropriateness of the color is checked with the principle that no neighboring points have the same color. The resulting colors are members of the solution set. The coloring process is repeated so that all points are colored. Regional coloring in the city of Semarang with the Greedy algorithm resulted in 4 colors as the minimum color solution used to color all sub-districts in the city of Semarang
RUANG TOPOLOGI BERTIPE TOTAL Erik Maurten Firdaus; Muhammad Faudzi Bahari
JURNAL ILMU KOMPUTER DAN MATEMATIKA Vol 6, No 1 (2025): JURNAL ILMU KOMPUTER DAN MATEMATIKA
Publisher : Universitas Muhammadiyah Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26751/jikoma.v6i1.2738

Abstract

Density-Based Spatial Clustering of Applications With Noise (DBSCAN) adalah salah satu algoritma pengelompokan dalam ilmu data. Ada keterkaitan antara DBSCAN dengan ruang topologi bertipe yang berhingga. Ruang topologi bertipe dapat dengan mudah dikonstruksikan dari ruang topologi dan himpunan terurut parsial. Penulis menambahkan syarat yang lebih kuat pada definisi ruang topologi bertipe. Penulis mendefinisikan ruang topologi bertipe total. Dengan adanya syarat tersebut, ada contoh ruang topologi bertipe yang bukan ruang topologi bertipe total. Hal ini berakibat pada contoh ruang topologi bertipe total yang akan lebih sedikit jika dibandingkan dengan contoh ruang topologi bertipe. Penulis memaparkan sifat ruang topologi bertipe total yang diperoleh dari abstraksi contoh ruang topologi bertipe total. Sifat ini secara umum tidak dimiliki oleh ruang topologi bertipe.
ANALSIS DINAMIK MODEL PREDATOR-PREY DENGAN PEMANENAN LINEAR PADA KEDUA POPULASI M. Adib Jauhari Dwi Putra; Erik Maurten Firdaus; Findasari Findasari
JURNAL ILMU KOMPUTER DAN MATEMATIKA Vol 4, No 2 (2023): JURNAL ILMU KOMPUTER DAN MATEMATIKA
Publisher : Universitas Muhammadiyah Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26751/jikoma.v4i2.2008

Abstract

We studied the Lotka Volterra predator-prey model with linear harvesting of prey and predators. We found that there are 3 equilibrium points, namely the point of extinction of the two species, the point of extinction of predators and the point of coexistence of both species, predator and prey. The stability and existence of the three points depend on the parameter values in the model. We found that the populations of both species were sustainable if the growth rate of the predators was greater than the mortality and yield rates of the predators. Overharvesting led to the extinction of both species. We also perform numerical simulations using the Python programming language to see the system behavior graphically
SIFAT-SIFAT RUANG TOPOLOGI T_2Δ Erik Maurten Firdaus; Ade Ima Afifa Himayati
JURNAL ILMU KOMPUTER DAN MATEMATIKA Vol 4, No 1 (2023): JURNAL ILMU KOMPUTER DAN MATEMATIKA
Publisher : Universitas Muhammadiyah Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26751/jikoma.v4i1.1790

Abstract

A topological space  is called if   is a  spaces and for every open set   and   In this paper, we investigate some properties of  space. We study hereditary, topological invariant, and the product of finite  spacesA topological space  is called if   is a  spaces and for every open set   and   In this paper, we investigate some properties of  space. We study hereditary, topological invariant, and the product of finite  spaces
TEOREMA DENSITAS PADA HIMPUNAN SEMUA BILANGAN SAMAR Erik Maurten Firdaus; M. Adib Jauhari Dwi Putra; Findasari Findasari
JURNAL ILMU KOMPUTER DAN MATEMATIKA Vol 5, No 1 (2024): JURNAL ILMU KOMPUTER DAN MATEMATIKA
Publisher : Universitas Muhammadiyah Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26751/jikoma.v5i1.2231

Abstract

A fuzzy number is a fuzzy set with some special properties. In this paper, we defined some orderings on the set of all fuzzy numbers. We proved the Density Theorem on the set of all fuzzy numbers with an  ordering . We showed that between any two fuzzy numbers, there exists a trapezoidal fuzzy number.