Claim Missing Document
Check
Articles

Found 7 Documents
Search

Effect of Gelatine and Citric Acid in the Glycerol Containing Edible Coating Used For Storage of Tomato Rudito, Rudito
Jurnal Teknologi Pertanian Vol 6, No 1 (2005)
Publisher : Fakultas Teknologi Pertanian Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (137.679 KB)

Abstract

A fresh is perishable mainly due its high respiration rate. This research was conducted to examine the use of gelatine and citric acid in the glycerol containing edible coating to reduce the rate of deterioration of tomatoes during storage at room temperature. The use of edible coating is expected to be able to substitute a low temperature storage which is more expensive. The respective concentrations evaluated were 10%, 12% and 14% for gelatine and 0,5%, 0,7% and 0,9% for citric acid. The experiment was run in triplicates employing a factorial completely Randomized Block Design using a breaker ripe stadium tomatoes of Intan variety grown in Malang regions. The treated tomatoes were stored at room temperature until a red ripe stadium was achieved. The results indicated that all the 9 treated samples were able to reach a red ripe stadium with some variations of quality after 15 days of storage. In general, the treated samples show a higher rate of respiration and higher level of vitamin C, but were firmer in texture and a lower level of weight lost than the ones of control. It was found that the use of 14% (w/v) gelatine and 0,9% (w/v) citric acid in a combination with 5% glycerol is the most effective to use as an edible coating for tomatoes stored at room temperature (26-29oC). The lost of the above-mentioned quality attributes is still minim after 15 days storage.   Key Words: Tomatoes, Edible coating, Respiration
Potensi pemanfaatan tumbuhan invasif daun sacha inchi (Plukenetia volubilis) sebagai antioksidan Sari, Nur Maulida; Aryani, Farida; Wartomo, Wartomo; Paurru, Periani; Lumbanraja, Gabriel Permadi; Astuti, Reni Puji; Rudito, Rudito
ULIN: Jurnal Hutan Tropis Vol 8, No 1 (2024)
Publisher : Fakultas Kehutanan Universitas Mulawarman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32522/ujht.v8i1.13203

Abstract

Aktivitas antioksidan dan antibakteri pada jenis tumbuhan invasif berpotensi sebagai obat telah diidentifikasi. Tumbuhan yang digunakan adalah bagian daun tumbuhan sacha inchi (Plukenetia volubilis). Tumbuhan diketahui memiliki kandungan antioksidan dan antibakteri yang diketahui aman dikonsumsi oleh manusia. Masyarakat memiliki kecenderungan memanfaatkan tumbuhan sebagai alternatif pengobatan alami. Penelitian ini bertujuan untuk mendapatkan informasi kandungan kimia tumbuhan serta mengetahui potensi antioksidan pada ekstrak etanol daun sacha inchi (Plukenetia volubilis). Analisis fitokimia dilakukan dengan menggunakan metode uji kualitatif mengacu pada Harborne dan Kokate. Pengujian aktivitas antioksidan dilakukan dengan menggunakan metode uji dekolorisasi radikal bebas DPPH. Hasil analisis fitokimia menunjukkan ekstrak etanol daun sacha inchi (Plukenetia volubilis) mengandung alkaloid, flavonoid, triterpenoid, tanin dan saponin. Aktivitas antioksidan ekstrak etanol daun sacha inchi (Plukenetia volubilis) menunjukkan kemampuan menghambat radikal bebas DPPH sebesar 84 % pada konsentrasi 100 ppm. Hasil penelitian ini menunjukkan bahwa ekstrak etanol daun sacha inchi (Plukenetia volubilis) memiliki kandungan antioksidan alami dan berpotensi untuk dikembangkan lebih lanjut serta memberikan informasi ilmiah sebagai dasar penggunaan tumbuhan sebagai antioksidan alami.
Support Vector Machine for Classifying Prostate Cancer Data B, Muslimin; Rachmadani, Budi; Rudito, Rudito
Jurnal Sistem Informasi dan Komputer Terapan Indonesia (JSIKTI) Vol 7 No 3 (2025): March
Publisher : INFOTEKS (Information Technology, Computer and Sciences)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33173/jsikti.205

Abstract

Prostate cancer is one of the most prevalent cancers among men worldwide, making early detection and accurate classification essential for improving patient outcomes. This study investigates the application of Support Vector Machine (SVM) models for classifying prostate cancer using clinical and demographic data. Features such as prostate-specific antigen (PSA) levels, Gleason scores, tumor stage, and patient age were utilized to train and evaluate the model. Comprehensive preprocessing techniques, including handling missing values, feature normalization, and addressing class imbalance with the Synthetic Minority Oversampling Technique (SMOTE), were employed to ensure robust model performance. The SVM model, optimized with a radial basis function (RBF) kernel, achieved an accuracy of 94.2%, with precision, recall, and F1-scores indicating reliable classification of both cancerous and non-cancerous cases. However, the results highlight challenges with the minority class, emphasizing the need for better handling of imbalanced datasets. Explainability techniques such as SHAP (Shapley Additive Explanations) were integrated to provide interpretable insights into the model’s predictions, with PSA levels and Gleason scores identified as the most influential features. This research demonstrates the potential of SVM in prostate cancer classification, providing a foundation for integrating machine learning models into clinical workflows for improved diagnostic precision and patient care.
Pembuatan Kopi Tiwai untuk Peningkatan Pendapatan Masyarakat di Kelurahan Sungai Pinang Dalam, Kota Samarinda Popang, Elisa Ginsel; Naibaho, Netty Maria; Barus, Mika Debora Br; Kurniawan, Edy Wibowo; Lisnawati, Andi; Rahman, Mujibu; Yamin, Muh; Syauqi, Anis; Hamka, Hamka; Aryani, Farida; Zamroni, Ahmad; Rudito, Rudito; Bary, M. Atta; Yanti, Rahma; Pratama, Adnan Putra
Jurnal Pengabdian kepada Masyarakat Nusantara Vol. 5 No. 4 (2024): Jurnal Pengabdian kepada Masyarakat Nusantara (JPkMN) Edisi September - Desembe
Publisher : Lembaga Dongan Dosen

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55338/jpkmn.v5i4.4034

Abstract

Kopi merupakan salah satu minuman kaya manfaat bagi tubuh yang mengandung antioksidan sebagai penangkal dari berbagai macam penyakit. Bawang tiwai merupakan salah satu tanaman tradisional yang menjadi ciri khas masyarakat Kalimantan yang memiliki banyak khasiat bagi kesehatan. Kegiatan ini dilaksanakan di Kelurahan Sungai Pinang Dalam RT 81, Kecamatan Sungai Pinang, Kota Samarinda. Tujuan dari kegiatan pengabdian masyarakat ini adalah untuk memberikan informasi kepada masyarakat bagaimana manfaat dari bawang tiwai dengan mengolahnya menjadi minuman kopi tiwai sekaligus menyampaikan prospek peluang usaha dari pembuatan kopi tiwai. Metode dilakukan dengan tahapan observasi awal, koordinasi mitra, pelaksanaan program dalam bentuk sosialisasi dan demonstrasi, dan evaluasi. Hasil yang diperoleh dari kegiatan ini masyarakat mampu memahami proses pembuatan kopi tiwai mulai dari tahap pembuatan bubuk tiwai meliputi sortasi umbi, pengecilan ukuran, pengeringan, penyangraian, penggilingan dan pengayakan. Masyarakat juga memahami proses pembuatan bubuk kopi yang meliputi sortasi, penyangraian, penggilingan, pengayakan, dan terakhir masyarakat mampu membuat kopi tiwai meliputi pencampuran bubuk tiwai dan kopi serta pencampuran dan pengemasan dalam kantong kopi. Pengemasan dengan menggunakan kantong teh agar proses penyeduhan menjadi lebih praktis dan memperkenalkan penyajian kopi dengan gaya baru. Masyarakat dapat membuat sendiri untuk dikonsumsi secara pribadi dan menjadi peluang untuk dikembangkan menjadi produk yang bernilai jual atau komersial.
Pemanfaatan Teknologi Tepat Guna Dalam Meningkatkan Produksi Rengginang Di Kelurahan Sidodadi Kota Samarinda Maria Naibaho, Netty; Lisnawati, Andi; Khotimah, Khusnul; Rudito, Rudito; Syauqi, Anis; Rahman, Mujibu; Susanti, Tere Adi; Hamka, Hamka; Yamin, M.
Jurnal Inovasi Hasil Pengabdian Masyarakat (JIPEMAS) Vol 3 No 1 (2020)
Publisher : University of Islam Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33474/jipemas.v3i1.4465

Abstract

Rengginang is one of the traditional foods of the archipelago that has been consumed as a snack or main food since time immemorial. At the first rengginang is a food made from the rest of rice that does not run out, rather than being wasted in rice, it is processed into savory and crunchy food in the form of rengginang. Usually the processing is very simple, it is only dried by drying and frying and can be consumed immediately. Along with the time the tasty and crunchy food is very popular with consumers, so that the prestige of rengginang extends among the community and becomes one of the business opportunities for the culprit, especially the housewife, namely Mrs. Darmini. This science and technology for the community has a positive effect on partners and other business people that the importance of using simple technology is effective, thus increasing the production process of rice. The introduction and administration of a sealer is also very important to maintain the quality of the rengginang. Besides that, the need for legality of business such as P-IRT to ensure food security for consumers. This science and technology activity for the community is expected to continue as an effort to provide coaching and mentoring for micro-businesses that have the prospect of being able to survive and develop in the future
Development Intelligent Agent in Educational Game “Pesut Adventure – Borneo Animal Match-Up” with Shuffle Random Algorithm Khoirunnita, Aulia; Harpad, Bartolomius; Ikhsan, Nurul; Andrea, Reza; Beze, Husmul; Rudito, Rudito
TEPIAN Vol. 4 No. 4 (2023): December 2023
Publisher : Politeknik Pertanian Negeri Samarinda

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51967/tepian.v4i4.2891

Abstract

Research developing Edu-game ”Pesut Adventure – Borneo Animal Educational Game” is a research develop Match-Up type game. In this type game, player must find match 2 images of the Borneo animals in the same time, the player must remember the position of the image to be matched. The shuffling-random algorithm used to make images position always scrambled and player never get bored playing. AI technology (artificial intelligence) is also applied on this research. Using the Finite State Machine (FSM) model, the game agent was created in funny-animals form. It will mentoring the children to play this game like a teacher
Hypertension Risk Prediction Using GRU-Based Neural Network with Adam Optimization B, Muslimin; Racmadhani, Budi; Rudito, Rudito
Jurnal Sistem Informasi dan Komputer Terapan Indonesia (JSIKTI) Vol 6 No 2 (2023): December
Publisher : INFOTEKS (Information Technology, Computer and Sciences)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33173/jsikti.258

Abstract

Hypertension remains one of the most prevalent chronic conditions worldwide and continues to be a major contributor to cardiovascular morbidity and mortality. Early identification of individuals at high risk is essential, yet conventional screening approaches often rely on periodic clinical examinations that may overlook subtle lifestyle or behavioral indicators. This study aims to address this challenge by developing a predictive model that estimates hypertension risk using a GRU-based neural network enhanced with the Adam optimization algorithm. The motivation for using this approach stems from the ability of GRU networks to capture nonlinear feature interactions and the effectiveness of Adam in improving training stability and convergence. The proposed system incorporates a structured preprocessing pipeline, feature scaling, and a sequential model architecture to classify individuals into hypertension and non-hypertension groups. The results show that the model achieves strong predictive performance, supported by accuracy trends, loss reduction patterns, and confusion matrix analysis that collectively demonstrate consistent learning behavior. The evaluation indicates that the GRU classifier successfully recognizes relevant health attributes such as stress levels, salt intake, age, sleep duration, and heart rate. Future research may explore expanded datasets, additional health indicators, or hybrid architectures to further enhance accuracy and improve clinical applicability. Overall, this work contributes an interpretable and efficient approach for health risk prediction and supports the development of intelligent digital health monitoring systems.