Claim Missing Document
Check
Articles

Found 2 Documents
Search

Numerical modeling and simulation of fatigue crack growth rate due to cyclic loading on doubler structure fuselage skin station number 360-380 stringer 6L-7L Boeing 737-900 extended range aircraft Lado Rislya Prakasa; Djarot Wahju Santoso
Angkasa: Jurnal Ilmiah Bidang Teknologi Vol 13, No 2 (2021): November
Publisher : Institut Teknologi Dirgantara Adisutjipto

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (823.791 KB) | DOI: 10.28989/angkasa.v13i2.1071

Abstract

Untuk mengetahui kekuatan struktur doubler dalam menahan terjadinya kegagalan akibat retakan yang disebabkan oleh cyclic loading, diperlukan suatu analisis tersendiri yang tidak terdapat pada panduan Structural Repair Manual (SRM). Cyclic loading dapat mengurangi kekuatan skin doubler secara bertahap (fatigue) hingga mencapai kegagalan (fracture). Pada penelitian ini akan dilakukan analisis crack growth rate dan jumlah siklus pembebanan yang dibutuhkan untuk memunculkan retakan dengan panjang tertentu (fatigue cycle) terhadap struktur doubler fuselage skin pesawat Boeing 737-900 Extended Range dengan station number 360-380 di antara stringer 6L-7L pada setiap panjang retakan dan ketinggian terbang simulasi. Analisis dilakukan menggunakan pendekatan numerik dengan metode Modified Virtual Crack Closure Integral (MVCCI) untuk mendapatkan nilai Stress Intensity Factor (SIF) melalui software berbasis metode elemen hingga. Melalui nilai yang diperoleh dapat diketahui bahwa nilai crack growth rate dan fatigue cycle berbanding lurus terhadap variasi panjang retakan dan ketinggian terbang simulasi yang diberikan. Nilai crack growth rate paling rendah terjadi pada struktur doubler dengan panjang retakan 8,5 mm dan kondisi terbang 5000 feet yaitu sebesar 2,964 mm/cycle, dan nilai tertinggi sebesar 5,471  mm/cycle terjadi pada struktur doubler dengan panjang retakan 51 mm dan kondisi terbang 40000 feet. Sedangkan, nilai fatigue cycle paling rendah terjadi pada struktur doubler dengan panjang retakan 8,5 mm dan kondisi terbang 40000 feet yaitu sebesar 2,540  cycle, dan nilai tertinggi sebesar 5,470  cycle terjadi pada struktur doubler dengan panjang retakan 51 mm dan kondisi terbang 5000 feet.
THE UTILIZATION OF BAMBOO WASTE AS A NEW ALTERNATIVE MATERIAL IN THE AIRCRAFT FUSELAGE INTERIOR PANEL STRUCTURE Lado Rislya Prakasa
Vortex Vol 2, No 1 (2021)
Publisher : Institut Teknologi Dirgantara Adisutjipto

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (4600.856 KB) | DOI: 10.28989/vortex.v2i1.932

Abstract

In the aircraft manufacturing industry, the strength and weight of the material is one of the important considerations in structural design. Composite material is a material composed of two or more forming materials, each of which has different mechanical properties. Aircraft structure in this era are 50 - 80% composed of glass or carbon fiber composite materials as reinforcement. Unfortunately, these fibers when recycled produce harmful CO gas, difficult to degrade naturally and cause itching when in contact with human skin. For this reason, environmentally friendly and strong fibers are needed to replace the role of glass or carbon fibers. Is a bamboo plant, which is abundant in Indonesia which is considered suitable as a substitute material. In this study, a mechanical test and descriptive analysis were carried out on the strength of the composite material with variations in the types of bamboo fibers apus, wulung, tutul and petung. These fibers are arranged with epoxy resin and hardener as a binding material (matrix). And each fiber will be arranged in  0 ° pattern to the matrix. Then each material with a different fiber type will be tested for tensile and bending to obtain the value of stress and strain that occurs at its maximum loading. And the result is the average tensile stress value (Mpa) composite material of apus bamboo is 75.95, wulung bamboo 49.92, petung bamboo 112.73, tutul bamboo 83.85. Then the average bending stress (Mpa) composite material of apus bamboo was 239.073, wulung bamboo 214.236, petung bamboo 249.67, tutul bamboo 272.79. With this result, bamboo fiber composites are considered to be able to replace the role of carbon or glass fibers, as an alternative composite material in some parts of the interior fuselage of aircraft panels. Keyword: Composites material, Matrix, Bamboo Fibers, Carbon and Glass Fibers, Stress and Strain.