Zico Pratama Putra
Universitas Nusa Mandiri

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Analisis Desain Software Process Improvement Untuk Organisasi Pengembang Perangkat Lunak Skala Usaha Kecil Ade Priyatna; Kukuh Panggalih; Deny Robyanto; Zico Pratama Putra
Pixel :Jurnal Ilmiah Komputer Grafis Vol 15 No 1 (2022): Vol 15 No 1 (2022): Jurnal Ilmiah Komputer Grafis
Publisher : STEKOM PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51903/pixel.v15i1.759

Abstract

The development of software today in large and small organizations encourages every organization to develop and control in terms of development. Every organization in software development must grow and be able to improve itself, one of which is by handling advancement, if the company cannot do this. Therefore, the company will never be able to learn to take advantage of previous experience, so it will not be able to improve the quality of the existing process. Computer program Prepare Advancement can be done by referring to the CMMI (Capability Development Demonstrate Integration) made by SEI (Computer Program Designing Founded). SEI is a research center in the field of program designing, especially those related to procurement, engineering item lines, and prepare change. CMMI itself defines several levels of development, in order to go up to a higher level a number of processes must be carried out.
Penyuluhan Literasi Media untuk Bijak di Media Sosial dan Pemanfaatan Media Digital Dwiza Riana; Agus Subekti; Hilman F. Pardede; Zico Pratama Putra; Faruq Aziz
Jurnal Abdimas Prakasa Dakara Vol. 2 No. 2 (2022): Literasi Media dan Promosi Kreatif dalam Kegiatan Kemasyarakatan
Publisher : LPPM STKIP Kusuma Negara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37640/japd.v2i2.1522

Abstract

Understanding the power of media must be promoted at all levels. Efforts to develop media literacy, both in the form of thoughts and in conducting outreach activities, need to be carried out and supported by various stakeholders. Especially in the current era of digital media, people are used to and easily access social media. There is also growing concern about the negative impact of social media use on young people. Therefore, it is necessary to teach the younger generation media skills to use social media. This is the basis for making joint activities aimed at educating the younger generation to be wise in using social media and being able to use digital media well. This activity took place on April 3, 2022 with a total of 15 participants. Based on the results of the activities carried out, the application of positive communication resulted in positive changes in the insights, knowledge, skills, values, and attitudes of adolescents, and this activity has important benefits for community activities. to successfully achieve the goals and benefit the community, especially the partners of the SIGMA Foundation.
Analisis Perbandingan Algoritma Pembelajaran Mesin untuk Meningkatkan Akurasi dan Klasifikasi Tumor Otak Joy Lawa Rizky; Zico Pratama Putra
IJAI (Indonesian Journal of Applied Informatics) Vol 9, No 1 (2024)
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/ijai.v9i1.90101

Abstract

Abstrak: Klasifikasi tumor otak bertujuan untuk mengevaluasi dan membandingkan kinerja beberapa algoritma pembelajaran mesin dalam klasifikasi tumor otak menggunakan Citra MRI. Dalam penelitian ini, metodologi yang digunakan melibatkan pengujian algoritma tradisional seperti K-Nearest Neighbors (KNN), Naïve Bayes, Support Vector Machines (SVM), dan beberapa arsitektur Deep Learning seperti Neural Network Data yang digunakan dalam penelitian ini terdiri dari citra MRI otak yang telah dilabeli secara manual oleh ahli radiologi. Kami membandingkan kinerja algoritma berdasarkan beberapa metrik evaluasi,  termasuk akurasi, presisi, recall, dan F1-score. Hasil penelitian menunjukkan bahwa algoritma berbasis Neural Network (0.99) secara signifikan mengungguli algoritma tradisional seperti KNN (0.98), Naive Bayes (0.97), dan SVM (0.98) dalam hal akurasi dan ketahanan terhadap variasi data. Namun, algoritma Neural Network dan metode ensemble menunjukkan kinerja yang kompetitif dengan keuntungan dalam hal interpretabilitas dan kecepatan pelatihan. Studi ini menyoroti keunggulan dan keterbatasan masing-masing algoritma dalam konteks klasifikasi tumor otak dan memberikan panduan praktis untuk memilih algoritma yang paling sesuai berdasarkan kebutuhan klinis dan karakteristik dataset. Penelitian lebih lanjut diperlukan untuk mengoptimalkan integrasi metode-metode ini dalam sistem pendukung keputusan klinis guna meningkatkan hasil diagnosis dan perawatan pasien===============================================Abstract:Brain tumor classification aims to evaluate and compare the performance of various machine learning algorithms in classifying brain tumors using MRI images. In this study, the methodology involves testing traditional algorithms such as K-Nearest Neighbors (KNN), Naïve Bayes, Support Vector Machines (SVM), and several deep learning architectures, including Neural Networks. The dataset used consists of brain MRI images manually labeled by radiology experts. We compared the performance of these algorithms based on several evaluation metrics, including accuracy, precision, recall, and F1-score. The results show that Neural Network-based algorithms (0.99) significantly outperform traditional algorithms such as KNN (0.98), Naïve Bayes (0.97), and SVM (0.98) in terms of accuracy and robustness to data variation. However, Neural Networks and ensemble methods demonstrated competitive performance with advantages in interpretability and training speed. This study highlights the strengths and limitations of each algorithm in the context of brain tumor classification and provides practical guidance for selecting the most suitable algorithm based on clinical needs and dataset characteristics. Further research is needed to optimize the integration of these methods into clinical decision support systems to enhance diagnosis and treatment outcomes for patients