Claim Missing Document
Check
Articles

Found 5 Documents
Search

CHANGE DETECTION OF CROPPING PATTERN IN PADDY FIELD USING MULTI SPECTRAL SATELLITE DATA FOR ESTIMATING IRRIGATION WATER NEEDED Shofiyati, Rizatus; Uchida, Satoshi; Sarwani, Muhrizal; H. Ismullah, Ishak
AGRIVITA, Journal of Agricultural Science Vol 34, No 3 (2012)
Publisher : Faculty of Agriculture University of Brawijaya and Indonesian Agronomic Assossiation

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This paper investigates the use of multi spectral satellite data for cropping pattern monitoring in paddy field. The southern coastal of Citarum watershed, West Java Province was selected as study sites. The analysis used in this study is identifying crop pattern based on growth stages of wetland paddy and other crops by investigating the characteristic of Normalized Difference Vegetation Indices (NDVI) and Wetness of Tasseled Cap Transformation (TCT) derived from 14 scenes of Landsat TM date 1988 to 2001. In general, the phenological of growth stages of wetland paddy can be used to distinguish with other seasonal crops. The research results indicate that multi spectral satellite data has a great potential for identification and monitoring cropping pattern in paddy field. Specific character of NDVI and Wetness also can produce a map of cropping pattern in paddy field that is useful to monitor agricultural land condition. The cropping pattern can also be used to estimate irrigation water needed of paddy field in the area. Expected implication of the information obtained from this analysis is useful for guidance more appropriate planning and better management of agricultural.
CHANGE DETECTION OF CROPPING PATTERN IN PADDY FIELD USING MULTI SPECTRAL SATELLITE DATA FOR ESTIMATING IRRIGATION WATER NEEDED Rizatus Shofiyati; Satoshi Uchida; Muhrizal Sarwani; Ishak H. Ismullah
AGRIVITA, Journal of Agricultural Science Vol 34, No 3 (2012)
Publisher : Faculty of Agriculture University of Brawijaya in collaboration with PERAGI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17503/agrivita.v34i3.68

Abstract

This paper investigates the use of multi spectral satellite data for cropping pattern monitoring in paddy field. The southern coastal of Citarum watershed, West Java Province was selected as study sites. The analysis used in this study is identifying crop pattern based on growth stages of wetland paddy and other crops by investigating the characteristic of Normalized Difference Vegetation Indices (NDVI) and Wetness of Tasseled Cap Transformation (TCT) derived from 14 scenes of Landsat TM date 1988 to 2001. In general, the phenological of growth stages of wetland paddy can be used to distinguish with other seasonal crops. The research results indicate that multi spectral satellite data has a great potential for identification and monitoring cropping pattern in paddy field. Specific character of NDVI and Wetness also can produce a map of cropping pattern in paddy field that is useful to monitor agricultural land condition. The cropping pattern can also be used to estimate irrigation water needed of paddy field in the area. Expected implication of the information obtained from this analysis is useful for guidance more appropriate planning and better management of agricultural.
AN EFFECTIVE INFORMATION SYSTEM OF DROUGHT IMPACT ON RICE PRODUCTION BASED ON REMOTE SENSING Rizatus Shofiyati; Wataru Takeuchi; Soni Darmawan; Parwati Sofan
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 11, No 2 (2014)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1667.47 KB) | DOI: 10.30536/j.ijreses.2014.v11.a2613

Abstract

Long droughts experienced in the past are identified as one of the main factors in the failure of rice production. In this regard, special attention to monitor the condition is encouraged to reduce the damage. Currently, various satellite data and approaches can withdraw valuable information for monitoring and anticipating drought hazards. MODIS, MTSAT, AMSR-E, TRMM and GSMaP have been used in this activity. Meteorological drought index (SPI) of the daily and monthly rainfall data from TRMM and GSMaP have analyzed for last 10-year period. While, agronomic drought index has been studied by observing the character of some indices (EVI, VCI, VHI, LST, and NDVI) of sixteen-day and monthly MODIS, MTSAT, and AMSR-E data at a period of 4 years. Network for satellite data transfer has been built between LAPAN (data provider), ICALRD (implementer), IAARD Cloud Computing, University of Tokyo (technical supporter), and NASA. Two information system have been developed: 1) agricultural drought using the model developed by LAPAN, and 2) meteorological drought developed by Takeuchi (University of Tokyo).The accuracy study using quantitative method for LAPAN model uses VHI is 60% (Kappa 0,44), while that of for University of Tokyo model uses qualitative model with KBDI value 500-600 shows an early indication of  drought for paddy field. This will help the government or field officers in rapid management actions for the indicated drought area.This paper describes the implementation and dissemination of drought impact monitoring model on the area of rice production center using an integrated information system satellite based model. The two developed information systems are effective for spatially dissemination of drought information.
Monitoring Agricultural Drought Using GIS and Remote Sensing Technologies in Upper Brantas Watershed RIZATUS SHOFIYATI; K. HONDA; N.T.S WIJESEKERA; . WIDAGDO
Jurnal Tanah dan Iklim (Indonesian Soil and Climate Journal) No 20 (2002): Desember 2002
Publisher : Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21082/jti.v0n20.2002.%p

Abstract

Droughts disasters occured in some parts of Indonesian area periodically. To anticipate land and crops caused by drought needs historical data and information. Remote sensing provides the good capability to achieve spatial distributed, wide area coverage and multi-temporal. The study purposes to utilize remote sensing technology for agricultural drought monitoring and assessing in Upper Brantas Watershed. This study had used NOAA AVHRR were achieved from clearest NOAA AVHRR data selected every month from April 1997 to November 1998 and Landsat TM acquired May and June 1997. The method used in this research considers the relationship among rainfall and fluctuation of NDVI and BT. The study shows that an NDVI value of less than 0,28 was recognized as an appropriate threshold for the identification of drought affected area. NDVI and BT have an inverse relationship. The value can be used to delineate the spatially distributed for agricultural drought monitoring and assessment. Moreover, the map can be used for helping to anticipate the drought risk by changing the cropping pattern and other farming system in drought areas.
AN EFFECTIVE INFORMATION SYSTEM OF DROUGHT IMPACT ON RICE PRODUCTION BASED ON REMOTE SENSING Rizatus Shofiyati; Wataru Takeuchi; Soni Darmawan; Parwati Sofan
International Journal of Remote Sensing and Earth Sciences Vol. 11 No. 2 (2014)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2014.v11.a2613

Abstract

Long droughts experienced in the past are identified as one of the main factors in the failure of rice production. In this regard, special attention to monitor the condition is encouraged to reduce the damage. Currently, various satellite data and approaches can withdraw valuable information for monitoring and anticipating drought hazards. MODIS, MTSAT, AMSR-E, TRMM and GSMaP have been used in this activity. Meteorological drought index (SPI) of the daily and monthly rainfall data from TRMM and GSMaP have analyzed for last 10-year period. While, agronomic drought index has been studied by observing the character of some indices (EVI, VCI, VHI, LST, and NDVI) of sixteen-day and monthly MODIS, MTSAT, and AMSR-E data at a period of 4 years. Network for satellite data transfer has been built between LAPAN (data provider), ICALRD (implementer), IAARD Cloud Computing, University of Tokyo (technical supporter), and NASA. Two information system have been developed: 1) agricultural drought using the model developed by LAPAN, and 2) meteorological drought developed by Takeuchi (University of Tokyo).The accuracy study using quantitative method for LAPAN model uses VHI is 60% (Kappa 0,44), while that of for University of Tokyo model uses qualitative model with KBDI value 500-600 shows an early indication of drought for paddy field. This will help the government or field officers in rapid management actions for the indicated drought area.This paper describes the implementation and dissemination of drought impact monitoring model on the area of rice production center using an integrated information system satellite based model. The two developed information systems are effective for spatially dissemination of drought information.