Hyung Woo Lee
Department of Chemical Engineering, Faculty of Industrial Technology Institute of Technology Bandung, Jl. Ganesha 10, Bandung, 40132

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

A Scaling-up Synthesis from Laboratory Scale to Pilot Scale and to near Commercial Scale for Paste-Glue Production Sitompul, Johnner P.; Lee, Hyung Woo; Kim, Yook Chan; Chang, Matthew W.
Journal of Engineering and Technological Sciences Vol 45, No 1 (2013)
Publisher : ITB Journal Publisher, LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (234.503 KB) | DOI: 10.5614/j.eng.technol.sci.2013.45.1.2

Abstract

This paper concerns on developing a synthesis method of paste-glue production for gummed tape using a corn-based starch as an alternative feedstock from laboratory-scale to pilot-scale and to near commercial scale. Basically, two methods of synthesis were developed to produce paste-glue in laboratory scale. Based on the two methods, we then scale-up the earlier laboratory scale data to pilot-scale and near commercial-scale for developing a large scale process production of paste-glue. Scaling up production from 1,000 ml reactor to 500 L pilot-scale reactor and 1,500 L near commercial scale reactor, we monitored pathway of temperature increase during reaction as well as adjustment of operating condition conducted for laboratory experimental data in order to produce a good quality of paste-glue. Some scaling up parameters have been found as well as critical parameters for a good product quality such as viscosity and ceiling temperature of the reaction which are very crucial in order to give optimum operating condition. We have selected synthesis method of paste-glue production and found the range of the parameters in order to produce a very good quality of paste-glue in pilot scale and near commercial scale.
Molecular Weight and Structural Properties of Biodegradable PLA Synthesized with Different Catalysts by Direct Melt Polycondensation Lee, Hyung Woo; Insyani, Rizki; Prasetyo, Daniel; Prajitno, Hermawan; Sitompul, Johnner P.
Journal of Engineering and Technological Sciences Vol 47, No 4 (2015)
Publisher : ITB Journal Publisher, LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (261.643 KB) | DOI: 10.5614/j.eng.technol.sci.2015.47.4.2

Abstract

Production of biodegradable polylactic acid  (PLA)  from biomassbased lactic acid is widely studied for substituting petro-based plastics  or polymers. This study investigated PLA production from commercial lactic acid in a batch reactor by applying a direct melt polycondensation method with two kinds of catalyst,  γ-aluminium(III)  oxide  (γ-Al2O3) or  zinc oxide (ZnO),  in reduced pressure. The molecular weight of the synthesized PLA was determined by capillary viscometry and its structural properties were analyzed by functional group analysis using FT-IR. The yields of polymer production with respect to the theoretical conversion were 47% for γ-Al2O3 and 35% for ZnO. However, the PLA from ZnO had a higher molecular weight (150,600 g/mol) than that from γ-Al2O3 (81,400 g/mol). The IR spectra of the synthesized PLA from both catalysts using polycondensation show the same behavior of absorption peaks at wave numbers from 4,500 cm-1 to 500 cm-1, whereas the PLA produced by two other polymerization methods – polycondensation and ring opening polymerization –showed a significant difference in % transmittance intensity pattern as well as peak area absorption at a wave number of 3,500 cm-1 as –OH vibration peak and at 1,750 cm-1 as –C=O carbonyl vibrational peak.
Pinch-Exergy Approach to Enhance Sulphitation Process Efficiency in Sugar Manufacturing Riadi, Indra; Sitompul, Johnner; Lee, Hyung Woo
CHEESA: Chemical Engineering Research Articles Vol. 7 No. 1 (2024)
Publisher : Universitas PGRI Madiun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25273/cheesa.v7i1.17831.1-14

Abstract

This study aimed to enhance the thermal efficiency of the sulphitation process in the boiling house of sugar plants using a combined approach of pinch and exergy analyses. Pinch analysis is a reliable method for optimizing the design of energy recovery systems. However, the primary limitations arise from its exclusive focus on heat transfer processes. On the other hand, exergy balance provides valuable insight into the consumption of supplied exergy by individual process units, serving as a quantitative measure of inefficiency. The boiling house was evaluated and modified using pinch-exergy analysis with Sulphitation Process capacity production of 8000 TCD. The results showed a potential reduction in exergy destruction by approximately 10.25 MW. The optimization effort led to reductions of 18.18 and 14.70% in the use of hot and cold external utility, respectively.