Chris Hill
Nottingham Geospatial Institute, University of Nottingham

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Increased Error Observability of an Inertial Pedestrian Navigation System by Rotating IMU Abdulrahim, Khairi; Hide, Chris; Moore, Terry; Hill, Chris
Journal of Engineering and Technological Sciences Vol 46, No 2 (2014)
Publisher : ITB Journal Publisher, LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (407.635 KB) | DOI: 10.5614/j.eng.technol.sci.2014.46.2.7

Abstract

Indoor pedestrian navigation suffers from the unavailability of useful GNSS signals for navigation. Often a low-cost non-GNSS inertial sensor is used to navigate indoors. However, using only a low-cost inertial sensor for the system degrades its performance due to the low observability of errors affecting such low-cost sensors. Of particular concern is the heading drift error, caused primarily by the unobservability of z-axis gyro bias errors, which results in a huge positioning error when navigating for more than a few seconds. In this paper, the observability of this error is increased by proposing a method of rotating the inertial sensor on its y-axis. The results from a field trial for the proposed innovative method are presented. The method was performed by rotating the sensor mechanically–mounted on a shoe–on a single axis. The method was shown to increase the observability of z-axis gyro bias errors of a low-cost sensor. This is very significant because no other integrated measurements from other sensors are required to increase error observability. This should potentially be very useful for autonomous low-cost inertial pedestrian navigation systems that require a long period of navigation time.