Claim Missing Document
Check
Articles

Found 13 Documents
Search

ANALISIS STRATEGI PEMASARAN SYARIAH DI BANK BSI KC CIPUTAT Sadiyah, Khotimatus; Hasbiyah, Wiwik; Suhatman, Zaldy
Madani Syari'ah: Jurnal Pemikiran Perbankan Syariah Vol 5 No 2 (2022): Madani Syari'ah
Publisher : Sekolah Tinggi Agama Islam Binamadani

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51476/madanisyariah.v5i2.374

Abstract

Penelitian ini bertujuan untuk menganalisis strategi pemasaran syariah di bank BSI KC Ciputat sehingga dapat mempercepat perkembangan perbankan syariah di Indonesia khususnya di daerah Ciputat Tangerang Selatan. Fenomena yang terjadi di BSI KC Ciputat yaitu BSI memiliki tingkat bagi hasil yang lumayan tinggi.Selain itu,mayoritas di daerah Tangsel khususnya di Ciputat memeluk agama islam namun, masih banyak nasabah yang belum berminat dengan sistem bagi hasil dan lebih memilih menyimpan dananya di bank konvensional.Selain itu BSI menggunakan bauran pemasaran 4P,yaitu strategi produk,harga,tempat, dan promosi.Dalam Fenomena tersebut,maka bagaimana menggunakan strategi pemasaran yang paling tepat untuk diterapkan.Penelitian ini merupakan penelitian kualitatif melalui metode deskriptif analisis menggunakan data primer dalam bentuk wawancara dan observasi langsung di BSI KC Ciputat,dan data sekunder melalui studi kepustakaan berupa buku refrensi,jurnal,laporan penelitian,surat kabar maupun website.Hasil pembahasan menunjukan bahwa Akad yang biasa diterapkan BSI terdapat 2 skema, diantaranya:1)Skema funding(penghimpunan dana) 2)Skema Landing(penyaluran dana).Untuk penyaluran dana nasabah BSI menggunakan akad diantaranya: akad Murabahah, Ijarah, Mudharabah,dan Musyarakah.Teknologi marketing BSI melalui pemanfaatan media elektronik dan media sosial serta tidak jarang marketing mendatangi nasabah dan mempromosikan secara langsung untuk bekerja sama.Marketing strategy BSI dengan pendekatan kepada nasabah yang belum menggunakan jasa BSI,memberikan pelayanan terbaik, memfasilitasi dengan teknologi terkini contohnya e-banking,serta yang terutama adalah tidak mengecewakan nasabah.Melalui kajian SWOT BSI berada pada level tumbuh dan berkembang didukung strategi yang agresif.Pada level tersebut pengembangan pasar,produk dan penetrasi pasar dapat menopang penyebarluasan sistem dan produk BSI.BSI juga didukung sebuah peluang dimana strategi agresif yang didukung oleh keunggulan biaya dan strategi diferensiasi menjadi alternatif untuk diterapkan.
Merancang Data Mining untuk Mendukung Strategi Cross-Selling Handijono, Ardijan; Suhatman, Zaldy
Jurnal Teknologi Sistem Informasi dan Aplikasi Vol. 6 No. 2 (2023): Jurnal Teknologi Sistem Informasi dan Aplikasi
Publisher : Program Studi Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Up-Selling and Cross-Selling are part of a CRM (Customer Relationship Management) strategy. Up-Selling is a way to encourage consumers to buy a better product that has a higher value than what has been purchased. Meanwhile, Cross-Selling is a method to offer complementary or additional products. In large outlets with product items that can reach thousands, it is not easy to be able to identify related products automatically and quickly. To be able to provide a solution to this problem, a literature study will be carried out in several journals regarding CRM, Data Mining and Call-Centers. In the Cross-Selling strategy, Data Mining can be used to identify a product that is related to any product by analyzing the customer's shopping basket in the transaction history, this technique is also known as MBA (Market Basket Analysis). The results of Data Mining are product/service recommendations that have a strong correlation with several other products that customers usually buy. By adding Call-Center technology and CTI (Computer Telephony Integration) recommendations from Data Mining can be followed up by Telemarketing Agents to offer products/services directly to Customers.
Meningkatkan Deduplikasi Data melalui Kesamaan Teks dalam Pembelajaran Mesin: Pendekatan Komprehensif Handijono, Ardijan; Suhatman, Zaldy
AKADEMIK: Jurnal Mahasiswa Humanis Vol. 4 No. 2 (2024): AKADEMIK: Jurnal Mahasiswa Humanis
Publisher : Perhimpunan Sarjana Ekonomi dan Bisnis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37481/jmh.v4i2.955

Abstract

The issue of dirty data, particularly duplicate data, is a common problem in data management that can affect data quality, operational efficiency, and decision-making. This study highlights the importance of implementing sustainable deduplication strategies as a key step in managing dirty data. We explore solutions for detecting duplicate data by measuring text similarity indices. In this study, the authors utilize a literature review research method. Through this method, we collected various journals on data deduplication and text similarity techniques, comparing several methods to identify the most effective approach. The data deduplication process in this study consists of two stages: 1) Matching - calculating the similarity value of a record with previous records, and 2) Clustering - grouping all records deemed duplicates of a single entity. Furthermore, this study extends to the development of a Python application capable of identifying and grouping similar customer data based on text similarity values. The Text Similarity measurement method uses the Jaro-Winkler Similarity technique. Experimental results and evaluations show that the Text Similarity approach is effective in identifying duplicate data with a high degree of accuracy. This study emphasizes the importance of sustainable deduplication, where the deduplication process is conducted periodically and continuously to ensure optimal data quality.