Dzikri Rahadian Fudholi
Department of Computer Science and Electronics, FMIPA UGM, Yogyakarta

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Spectrogram Window Comparison: Cough Sound Recognition using Convolutional Neural Network Dzikri Rahadian Fudholi; Muhammad Auzan; Novia Arum Sari
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 16, No 3 (2022): July
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.75697

Abstract

 Cough is one of the most common symptoms of diseases, especially respiratory diseases. Quick cough detection can be the key to the current pandemic of COVID-19. Good cough recognition is the one that uses non-intrusive tools such as a mobile phone microphone that does not disable human activities like stick sensors. To do sound-only detection, Deep Learning current best method Convolutional Neural Network (CNN) is used. However, CNN needs image input while sound input differs (one dimension rather than two). An extra process is needed, converting sound data to image data using a spectrogram. When building a spectrogram, there is a question about the best size. This research will compare the spectrogram's size, called Spectrogram Window, by the performance. The result is that windows with 4 seconds have the highest F1-score performance at 92.9%. Therefore, a window of around 4 seconds will perform better for sound recognition problems.
World Cup 2022 Knockout Stage Prediction Using Poisson Distribution Model Stanislaus Jiwandana Pinasthika; Dzikri Rahadian Fudholi
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 17, No 2 (2023): April
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.82280

Abstract

Football is one of the most popular sports in the world. The popularity makes every topic related to football interesting, for instance, the FIFA World Cup winner prediction. This topic is not only for casual discussion but could be a practical decision support for coaching staff to rate the team’s readiness. Most prediction methods use large match datasets. Since every national team has a different squad for every world cup and the FIFA World Cup is held every four years, the usage of a large match dataset is irrelevant. Therefore, there is a need for a prediction method based on the relevant data. We applied the Poisson distribution model for predicting the FIFA World Cup 2022 knockout stage match results. We calculate the probability of winning and losing based on their average goal scores and goal conceded and evaluate the difference by the actual result using de Finetti distance. The successful prediction is 8 out of 15 matches, with six inside the round of 16 games. This prediction model is also a brief example to overcome prediction problem using limited dataset. Thus, the new data attributes need to reformulate Poisson’s lambda. Further studies need to add the 3-4 prior world cup matches data to increase the acceptance of prediction.
Classification Methods Performance On Logistic Package State Recognition Muhammad Auzan; Dzikri Rahadian Fudholi; Paulus Josianlie P; M Ridho Fuadin
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 17, No 4 (2023): October
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.82697

Abstract

 In the distribution sector, logistic package experience activities, such as transport, distribution, storage, packaging, and handling. Even though those processes have reasonable operational procedures, sometimes the package experience mishandling. The mishandling is hard to identify because many packages run simultaneously, and not all processes are monitored. An Inertial Measurement Unit (IMU) is installed inside a package to collect three acceleration and rotation data. The data is then labeled manually into four classes: correct handling, vertical fall, and thrown and rotating fall. Then, using cross-validation, ten classifiers were used to generate a model to classify the logistic package status and evaluate the accuracy score. It is hard to differentiate between free-fall and thrown. The classification only uses the accelerometer data to minimize the running time. The correct handling classification gives a good result because the data pattern has few variations. However, the thrown, free-fall and rotating data give a lower result because the pattern resembles each other. The average accuracy of the ten classifications is 78.15, with a mean deviation of 4.31. The best classifier for this research is the Gaussian Process, with a mean accuracy of 94.4 % and a deviation of 3.5 %.