This Author published in this journals
All Journal Media Statistika
Mira Andriyani
Departemen Matematika, FMIPA, Universitas Gadjah Mada

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

PERAMALAN DATA PENUMPANG KERETA API DENGAN MENGGUNAKAN MAXIMAL OVERLAP DISCRETE WAVELET TRANSFORM- RECURRENT NEURAL NETWORK (MODWT-RNN) Mira Andriyani; Subanar Subanar
MEDIA STATISTIKA Vol 12, No 2 (2019): Media Statistika
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (498.176 KB) | DOI: 10.14710/medstat.12.2.164-174

Abstract

The train is one of the public transportation that is very popular because it is affordable and free of congestion. There is often a buildup of passengers at the station so that it sometimes causes a accumulation of passengers at the station and makes the situation at the station to be not conducive. In order to avoid a buildup of passengers, forecasting the number of passengers can be done. Forecasting is determined based on data in previous times. Data of train passengers in Java (excluding Jabodetabek) forms a non-stationary and contains nonlinear relationships between the lags. One of the nonlinear models that can be used is Recurrent Neural Network (RNN). Before RNN modeling, Maximal Overlap Wavelet Transform (MODWT) was used to make data more stationary. Forecasting model of train passengers in Java excluding Jabodetabek, Indonesia using MODWT-RNN results forecasting with RMSE is 252.85, while RMSE of SARIMA and RNN are 434.97 and 320.48. These results indicate that the MODWT-RNN model gives a more accurate result thanS ARIMA and RNN.