Hoe Dinh Nguyen
Phenikaa University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Pattern recognition based movement control and gripping forces control system on arm robot model using LabVIEW Nur Jamiludin Ramadhan; Noval Lilansa; Afaf Fadhil Rifa'i; Hoe Dinh Nguyen
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 13, No 1 (2022)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2022.v13.1-14

Abstract

Most arm robot has an inefficient operating time because it requires operator to input destination coordinates. Besides, main problem of arm robot is object’s vulnerability when it is manipulated by the robot. This research goals is to develop an arm robot control system which has ability to automatically detect object using image processing in order to reduce operating time. It is also able to control gripping force for eliminating damage to objects caused by robot gripper. This research is implemented in LabVIEW 2011 software to control arm robot model which can represent industrial scale robot. The software is designed with informative visualization to help user learn and understand robotic control concept deeply. The system can automatically detect object position based on pattern recognition method which has four steps: pre-processing process to initialize picture taken by camera, segmentation process for separating object from the background, classification process to determine characteristics of object, and position estimation process to estimate object position in the picture. The object’s position data are then calculated by using kinematic equation to control the robot’s motion. The results show that the system is able to detect object and move the robot automatically with accuracy rate in x-axis is 95.578 % and in y-axis is 92.878 %. The system also implements modified PI control method with FSR as input to control gripping force with maximum overshoot value 10 %. Arm robot model control system developed is successfully meet the expectation. The system control can be implemented to industrial scale arm robot with several modification because of kinematic similarity between model and industrial scale robot.
Five-axis parallel mechanism system (PMS) CNC partial link control system based on modified inverse kinematic of 6-DOF UPS parallel manipulator Nur Jamiludin Ramadhan; Indrawanto Indrawanto; Hoe Dinh Nguyen
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 14, No 1 (2023)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2023.v14.1-10

Abstract

This paper presents a control system algorithm for a five-axis parallel mechanism system (PMS) CNC milling machine based on a 6-DOF Stewart platform parallel manipulator with a universal-prismatic-spherical (UPS) configuration. The control system reads the G-Code commands as standard CNC machine language, then extract data points and interpolates them to generate the robot trajectory patterns as motion references. Then, the control system uses the modified inverse kinematic equation to determine the length of each link to move the end effector to track the trajectory patterns from the previous G-code extraction process. The inverse kinematic equation is modified especially for the five-axis PMS CNC milling machine by including machine-offset and tools-offset parameters so it will be easier for the control system to implement the kinematic equation. As expected, the system simulation results successfully followed the G-Code program moving commands. The average error of the length control system is 0,1 mm, while the average error of the length change rate control system is 1,8 mm/s. The maximum error is 26.9 mm was caused by the system's inability to follow the motion profile in transient. It can be concluded that 6-DOF Stewart platform parallel structures,which provide better performance than serial structures, can be implemented as a new concept for the motion mechanism of five-axis CNC milling machines. The five-axis PMS CNC milling machine also promises better performance than conventional five-axis gantry structures CNC.