Claim Missing Document
Check
Articles

Found 2 Documents
Search

KOMPETENSI DAN KESIAPAN GURU DI KOTA PADANG MENGIMPLEMENTASIKAN KURIKULUM 2013 -, Rino -
Prosiding Seminar Pendidikan Ekonomi dan Bisnis Vol 1, No 1 (2015): Prosiding Seminar Nasional Pendidikan Ekonomi dan Bisnis
Publisher : Prosiding Seminar Pendidikan Ekonomi dan Bisnis

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (86.38 KB)

Abstract

Kurikulum 2013 menuntut kreatifitas, inovasi dan kemadirian guru. Perubahan paradigma guru yang dituntut adalah dari teaching yang teacher oriented menjadi aktifitas instruction yang student oriented dengan memperhatikan keseimbangan pencapaian kognitif, afektif dan psikomotor. Tujuan penelitian ini adalah menghasilkan alternatif model pemecahan masalah untuk meningkatkan kompetensi dan kesiapan guru dalam mengimplementasikan kurikulum 2013 pada masing-masing satuan pendidikan menengah SMA, SMK, MA di Sumatera Barat. Metode yang dipakai dalam penelitian ini adalah pendekatan deskriptif kualitatif kuantitatif dengan menggunakan instrumen berupa dokumen, observasi, angket, dan wawancara mendalam. Analisis data dilakukan dengan analisis statistik deskriptif dan analisis wawancara. Hasil penelitian ini guru-guru di kota Padang sudah kompetens dan siap mengimplementasikan kurikulum 2013. Untuk meningkatkan kompetensi dan kesiapan guru untuk mengimplementasikan kurikulum 2013 adalah dengan mengintensifkan kegiatan diklat dan kegiatan non diklat Kata kunci: kesiapan guru, kompetensi guru, kurikulum 2013Curriculum of 2013 requires creativity, innovation, and independence of the teacher. The changes in teacher’s paradigm required is from teaching with teacher oriented to instruction activity with student oriented, regarding to balance in cognitive, affective, and psychomotor achievement. This research aims to generate alternative model in problem-solving to enhance competency and readiness of teacher in implementing the 2013’s curriculum in each education unit (High School, Vocational High School, and Islamic High School in West Sumatra). This research used descriptive quantitative method, and used instruments such as document, questionnaire, observation, and interview. This research found that teachers in Padang already have competency and readiness to implementing the 2013’s curriculum. To enhance the competency and readiness of the teachers, there are need to held educational training and non educational training activity continuously. Key words: teachers’ readiness, teacher’s competence, curriculum of 2013
Penerepan Metode Neural Network Berbasis Algoritma Genetika Untuk Prediksi Penyakit Kanker Payudara -, Rino -
Tech-E Vol 1 No 1 (2017): Tech-E
Publisher : BSTI

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Cancer is a major challenge for mankind. Cancer can affect various parts of the body. This deadly disease can be detected in people of all ages. However, the risk of cancer increases with increasing age. Breast cancer is the most common cancer among women, and form largest cause of death for women as well. Then there are problems in the detection of breast cancer, resulting in the patient experiencing unnecessary treatment and cost. Insimilar studies, there are several methods used but there are problems due to the shape of the cancer cells are nonlinear. Neural networks can solve these problems, but neural network is weak in terms of determining the value of the parameter, so it needs to be optimized. Genetic algorithm is one of the optimization methods is good, therefore the values ​​of the parameters of the neural network will be optimized by using a genetic algorithm so as to get the best value of the parameter. Neural Network-based GA algorithm has the higher accuracy value than just using Neural Network algorithm. This is evident from the increase in value for the accuracy of the model Neural Network algorithm by 95.42% and the accuracy of algorithm-based Neural Network algorithm GA (Genetic Algorithm) of 96.85% with a difference of 1.43% accuracy. So it can be concluded that the application of Genetic Algorithm optimization techniques to improve the accuracy values on Neural Network algorithm.