Risfidian Mohadi
Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Palembang, 30662, Indonesia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Catalytic Oxidative Desulfurization of Dibenzothiophene by Composites Based Ni/Al-Oxide Nur Ahmad; Alfan Wijaya; Amri; Erni Salasia Fitri; Fitri Suryani Arsyad; Risfidian Mohadi; Aldes Lesbani
Science and Technology Indonesia Vol. 7 No. 3 (2022): July
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1788.962 KB) | DOI: 10.26554/sti.2022.7.3.385-391

Abstract

In the present study, composite layer double hydroxide-metal oxide (Ni/Al-TiO2 and Ni/Al-ZnO) was successfully prepared and used as catalyst of oxidative desulfurization of dibenzothiophene. Characterization of catalyst was used XRD, FTIR, and SEM-EDS. The structure of Ni/Al-LDH, TiO2, and ZnO in composite Ni/Al-TiO2 and Ni/Al-ZnO was consistent, which also indicated that the preparation of composite did not change the form of precursors. FTIR spectra of Ni/Al-TiO2 and Ni/Al-ZnO absorption band at 3398, 1639, 1339, 832, 731, and 682 cm−1. The catalysts have an irregular structure, TiO2 and ZnO adhere to the surface of Ni/Al LDH. The percent mass of Ti and Zn on the composite at 29.3% and 18.2%, respectively. The acidity of Ni/Al LDH increased after being composited with TiO2 and ZnO. The optimum reaction time, dosage catalyst, and temperature were 30 min, 0.25 g, and 50°C, respectively, and n-hexane as a solvent. The percentage conversion of dibenzothiophene on Ni/Al-LDH, TiO2, ZnO, Ni/Al-TiO2, and Ni/Al-ZnO were 99.44%, 91.92%, 95.36%, 99.88%, and 99.90%, respectively. The catalysts are heterogeneous system and the advantage is that can be used for reusability. After 3 times catalytic reactions, the conversion of dibenzothiophene still retains more than 80%, even Ni/Al-TiO2 and Ni/Al-ZnO composites still 97.79% and 98.99%, respectively.
Improvement of Congo Red Photodegradation Performance Through Zn/Al-TiO2 and Zn/Al-ZnO Preparation Nova Yuliasari; Amri; Risfidian Mohadi; Elfita Elfita; Aldes Lesbani
Science and Technology Indonesia Vol. 7 No. 4 (2022): October
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1458.707 KB) | DOI: 10.26554/sti.2022.7.4.449-454

Abstract

Layered double hydroxide (LDH) is an anionic clay material known to be effective as a catalyst for the photodegradation of dye organic pollutants. Zn/Al LDH was synthesized by coprecipitation then impregnated with metal oxides and calcined at 300oC to form Zn/Al-TiO2 and Zn/Al-ZnO as photodegradation catalysts of congo red (CR). The characterization of the catalysts after preparation using SEM and UV-DRS while the catalyst that have been used in 5 regeneration cycles was characterized by XRD and FTIR. Photodegradation of CR was carried out by optimizing pH, catalyst weight, and time radiation. Zn/Al LDH which was modified into Zn/Al-TiO2 and ZnAl-ZnO had a better degradation percentage, rate constant, and stability than Zn/Al LDH pristine structure. Zn/Al LDH, Zn/Al TiO2 and Zn/Al-ZnO catalyzed CR photodegradation for 120 minutes with percent degradation 68.39%, 81.24% and 71.09%, respectively.