Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Research In Chemical Engineering

Development of the Production of Curcumin Powder for Application in the Food Industry Alwani Hamad; Afwa Hayuningtyas; Bekti Wulan Sari; Mubshair Naveed
Research in Chemical Engineering Vol. 2 No. 1 (2023): March
Publisher : Universitas Muhammadiyah Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30595/rice.v2i1.52

Abstract

Curcumin has been identified as the most abundant bioactive constituent in turmeric (Curcuma longa) extract (2 - 8% w/w). Curcumin is used as a preservative, flavoring, and yellowish colorant agent in the food industry. Modern scientific studies have confirmed its anti-inflammatory, antioxidant, anti-carcinogenic, and antimicrobial properties. Curcumin is easily oxidized and light-damaged, and it is insoluble in water. This product's shelf life should be increased. Curcumin microencapsulation into powder solves these issues. This process has been used because of its low cost, equipment availability, continuous production, and ease of industry. Curcumin powder in food could be crude turmeric powder (0.58 - 3.14%w/w), curry powder (0.11 - 0.58%w/w), or spray dried turmeric oleoresin curcumin powder (40 - 50%w/w). Spray drying coats the curcumin core material into the matrix powder, improving stability. The wall material (gum arabic, maltodextrin, or chitosan) and emulsifying agent were dispersed in continuous phase with the curcumin core material to prepare the microencapsulated flowing powders. Several formulation modifications in spray drying methods, such as co-dried and binary blend materials, have been investigated to improve the stability of curcumin. Curcumin powder is becoming more popular as a treatment for a variety of ailments, as well as a compound that is generally regarded as safe. As a result, its application as a nutraceutical or functional food has the potential to be expanded further.   
Decaffeination of Coffee Bean Using Fermentation Process: Effect of Starter Concentration and Varieties on The Reduction of Caffeine and Antioxidant Activity Alwani Hamad; Dwi Nugraheni; Bekti Wulan Sari; Mubshair Naveed
Research in Chemical Engineering Vol. 2 No. 2 (2023): September
Publisher : Universitas Muhammadiyah Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30595/rice.v2i2.85

Abstract

Coffee is a popular drink due to its special aroma and taste. Coffee contains caffeine that contributes a distinctive aroma to coffee, which can also be used as a quality parameter. However, if consumed excessively, it can have a negative impact on health. The decaffeination process using fermentation is one of the alternative methods to reduce the caffeine content without altering the characteristic taste and aroma of coffee. The objective of the study was to determine the influence of starter concentration (0-15%) and variety of coffee (Arabica and Robusta) in the decaffeination process using fermentation on reducing caffeine and the antioxidant activity of coffee products. The parameters were investigated regarding the chemical characteristics, including the concentration of caffeine, total flavonoid content (TFC), total phenolic content (TPC), and antioxidant activity tests using the DPPH free radical and FRAP methods. The results showed that the starter concentration and variety of coffee beans had a significant effect on the chemical characteristics (TPC and TFC) and antioxidant activity of decaffeinated coffee (p-value < 0.05). At a starting starter concentration of 5%, caffeine concentration was higher than a starter rate of 1% and did not significantly increase as stater up. Robusta coffee showed a higher decrease in caffeine compared to Arabica coffee.