Bekti Wulan Sari
Department of Nutrition, Faculty of Public Health, Universitas Ahmad Dahlan, Yogyakarta, Indonesia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Effects of Emulsifier Type and Ingredient on the Foam Stability of Meringue Bekti Wulan Sari; Afwa Hayuningtyas; Pinyapat Jitphongsaikul; Vishal Chherti; Alwani Hamad
Research in Chemical Engineering Vol. 1 No. 2 (2022): September
Publisher : Universitas Muhammadiyah Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (427.984 KB) | DOI: 10.30595/rice.v1i2.23

Abstract

Food foams provide texture and structure for many food products, such as meringues. Meringues, a fundamental of culinary arts,  commonly consist of whipped egg white and sugar and have about most of the air phase. These types of composition allow for making different products with the same ingredients; thus, meringue design is essential to investigate foam stability and ability. This study aims to examine the foam stability of meringue using the different components such as protein as emulsifiers (egg white and gelatin) and the composition of sugars (icing and granule) on the foam stability and formation of meringue. Using gelatin as an emulsifier showed the foam more stable than egg white (>24 h), and adding the icing sugar with gelatin made the foam texture smoother. On the other hand, foam formation was faster when using emulsifier egg white, but stability was less than gelatin. The more stable foam produced by the combination of emulsifier and sugar ingredients would provide a better texture of meringue after baking, a smooth surface, no hole, and a more crunchy sweet taste. It was concluded that the composition of the ingredients and type of emulsifier would affect the stability and ability of foam, resulting in the character of the meringue after baking.
Development of the Production of Curcumin Powder for Application in the Food Industry Alwani Hamad; Afwa Hayuningtyas; Bekti Wulan Sari; Mubshair Naveed
Research in Chemical Engineering Vol. 2 No. 1 (2023): March
Publisher : Universitas Muhammadiyah Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30595/rice.v2i1.52

Abstract

Curcumin has been identified as the most abundant bioactive constituent in turmeric (Curcuma longa) extract (2 - 8% w/w). Curcumin is used as a preservative, flavoring, and yellowish colorant agent in the food industry. Modern scientific studies have confirmed its anti-inflammatory, antioxidant, anti-carcinogenic, and antimicrobial properties. Curcumin is easily oxidized and light-damaged, and it is insoluble in water. This product's shelf life should be increased. Curcumin microencapsulation into powder solves these issues. This process has been used because of its low cost, equipment availability, continuous production, and ease of industry. Curcumin powder in food could be crude turmeric powder (0.58 - 3.14%w/w), curry powder (0.11 - 0.58%w/w), or spray dried turmeric oleoresin curcumin powder (40 - 50%w/w). Spray drying coats the curcumin core material into the matrix powder, improving stability. The wall material (gum arabic, maltodextrin, or chitosan) and emulsifying agent were dispersed in continuous phase with the curcumin core material to prepare the microencapsulated flowing powders. Several formulation modifications in spray drying methods, such as co-dried and binary blend materials, have been investigated to improve the stability of curcumin. Curcumin powder is becoming more popular as a treatment for a variety of ailments, as well as a compound that is generally regarded as safe. As a result, its application as a nutraceutical or functional food has the potential to be expanded further.