Claim Missing Document
Check
Articles

Found 5 Documents
Search

RANCANG BANGUN APLIKASI MOBIL REMOTE CONTROL PEMANTAU BERBASIS ANDROID PADA MIKROKONTROLER ARDUINO Dzulqarnain, Muhammad Faqih
JUSTIN (Jurnal Sistem dan Teknologi Informasi) Vol 3, No 3 (2015)
Publisher : Jurusan Informatika Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (369.493 KB) | DOI: 10.26418/justin.v3i3.11506

Abstract

Remote control saat ini sudah bukan lagi menjadibarang mainan yang mahal bagi kebanyakan kalangan. Berbagaikalangan usia dapat memainkan perangkat ini dan disediakandalam berbagai macam jenis remote control. Semakin pesatkemajuan membuat berkembangnya teknologi remote controlrakitan dengan alternatif perangkat Arduino juga semakinberkembang. Arduino yang merupakan kit modul elektronik minidapat diatur dengan mudah karena cukup dengan memasangkanke perangkat mobil, maka terciptalah remote control baru yangmudah untuk dikendalikan. Penggunaan Arduino ini dapatdisatukan dengan perangkat smartphone Android sebagai devicepengendali perangkat. Pada penelitian ini akan dibangun mobilremote control yang dirancang dengan menggunakan Arduinosebagai otak mesin dan dikendalikan dengan smartphone Androidyang terhubung dengan koneksi bluetooth. Mobil remote controlini juga akan terpasang sebuah IP camera yang terkoneksisambungan wifi dan dikendalikan juga oleh smartphone Androiddalam satu aplikasi. Tujuan dari pembuatan aplikasi ini adalahuntuk menghasilkan aplikasi android yang mampu memberikankendali perintah pada mobil remote control Arduino melalui 2koneksi berbeda yaitu bluetooth sebagai pengendali gerak dankoneksi wifi untuk mengendalikan IP camera yang terpasang padamobil. Pembuatan perangkat yang menggunakan rekayasa ICpada mesin remote control dan aplikasi ini sebagai alternatif baruyang mudah dikembangkan untuk remote control karenaseringnya ditemukan perangkat remote control yang mahaldengan lebih dari 1 koneksi dan sulit dijangkau dandikembangkan oleh masyarakat serta tidak kompatibel dengankenyamanan pengguna. Arduino yang mudah dikembangkanbahasa pemrogramannya dan perakitannya dapat meminimalisirkesulitan untuk membuat perangkat remote control sendiri yangopen source dan mudah berubah-ubah apalagi jika perangkattersebut ditambahkan sebuah kamera pemantau. Dari hasilpengujian, dapat diketahui jarak terjauh mobil dapatdikendalikan dari perangkat Android adalah 30 meter pada ruangtanpa dinding dan jarak kendali kamera dengan sambungan wifiadalah 50 meter. Perbedaan jarak ini tidak akan salingmengganggu kinerja masing-masing perangkat.
Alih Teknologi Administrasi Rusun Kota Pontianak Berbasis Laravel Dzulqarnain, Muhammad Faqih; Khelfa Arzakky Syukri; Tegar Adji Nugroho
ASPIRASI : Publikasi Hasil Pengabdian dan Kegiatan Masyarakat Vol. 2 No. 5 (2024): September : ASPIRASI : Publikasi Hasil Pengabdian dan Kegiatan Masyarakat
Publisher : Asosiasi Periset Bahasa Sastra Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61132/aspirasi.v2i5.1028

Abstract

The current administration system for apartment buildings in Pontianak city still relies on manual data recording methods, which tend to cause various recording errors such as delays in data processing, incorrect data entry, and difficulties in accessing information. This condition has an impact on suboptimal service to apartment residents. As an alternative to address this problem, it is proposed to develop a web-based information system that can digitize data from various business processes in apartment management. This system is designed using the Laravel framework, a popular framework for web application development. The stages in this community service include in-depth analysis of system requirements that are suitable for the conditions of apartment buildings in Pontianak city, designing a user-friendly and efficient system, building the system based on the design that has been created from manual form recording, and conducting training for apartment managers to be able to operate the system well. This technology transfer has a positive impact on the change in the administration model and it is expected to create more effective and efficient apartment management and is easily accessible because it is online. Some other benefits that occur include increased accuracy of resident data, ease of accessing information, data transparency, and improved service quality for residents
Improving the Accuracy of Batik Classification using Deep Convolutional Auto Encoder Dzulqarnain, Muhammad Faqih; Fadlil, Abdul; Riadi, Imam
Compiler Vol 13, No 2 (2024): November
Publisher : Institut Teknologi Dirgantara Adisutjipto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28989/compiler.v13i2.2649

Abstract

This research investigates the development of model deep convolutional autoencoders to enhance the classification of digital batik images. The dataset used was sourced from Kaggle. The autoencoder was employed to enrich the image data prior to convolutional processing. By forcing the autoencoder to learn a lower-dimensional latent representation that captures the most salient features of the batik patterns. The performance of this enhanced model was compared against a standard convolutional neural network (CNN) without the autoencoder. Experimental results demonstrate that the incorporation of the autoencoder significantly improved the classification accuracy, achieving 99% accuracy on the testing data and loss value of 3.4%. This study highlights the potential of deep convolutional autoencoders as a powerful tool for augmenting image data and improving the performance of deep learning models in the context of batik image classification.
Performance Comparison of Learned Features from Autoencoder and Shape-Based Hu Moments for Batik Classification Dzulqarnain, Muhammad Faqih; Fadlil, Abdul; Riadi, Imam
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 4 (2025): JUTIF Volume 6, Number 4, Agustus 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.4.4827

Abstract

Batik classification depends critically on effective feature extraction to capture the unique geometric and visual characteristics of batik patterns. This study compares two distinct feature extraction methods for batik classification: learned features extracted via a convolutional autoencoder, and shape-based handcrafted features derived from Hu Moments. While autoencoders automatically learn complex latent representations that adapt to intricate pattern variations, Hu Moments provide invariant shape descriptors robust to rotation, scaling, and translation. The methodology involves extracting Hu Moment features and autoencoder latent features from the same batik image dataset, followed by evaluation with identical classifiers to ensure a fair comparison. Experimental results reveal key trade-offs: Hu Moments offer robustness and interpretability in capturing shape geometry, whereas autoencoder features better model complex, non-linear patterns. These findings highlight the complementary strengths of classical and learned feature extraction techniques, offering valuable insights for optimizing batik classification. This research advances feature extraction methodologies in cultural heritage image analysis, with broader applicability to pattern-rich domains like batik classification.
Pemanfaatan Artificial Intelligence untuk Peningkatan Literasi Digital pada Pengajaran di Lingkungan Perbatasan Muhammad, Muhammad; Dzulqarnain, Muhammad Faqih; Abdul Fadlil; Sutikno, Tole
CORISINDO 2025 Vol. 1 (2025): Prosiding Seminar Nasional CORISINDO 2025
Publisher : CORISINDO 2025

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/corisindo.v1.5606

Abstract

The utilization of technology, particularly Artificial Intelligence (AI), in education is crucial, especially in border regions that often face challenges related to digital literacy. This study aims to explore and implement AI technology to enhance digital literacy in teaching within border environments. The method used is community service involving training on the use of AI to support the learning process in several schools in border areas. In this activity, AI applications such as text-to-speech, automatic answer analysis, and providing improvement recommendations are used to assist students with special needs and enhance the effectiveness of learning evaluations. Survey results conducted with 40 respondents show that 100% agree that AI can help analyze student answers and provide improvement recommendations. Furthermore, 87.5% of participants stated that the digitalization of traditional knowledge through AI can help preserve local culture for future generations. Additionally, 50% of respondents agreed that the use of AI technologies, such as text-to-speech, can improve inclusivity in education, particularly for students with special needs. The survey results indicate that AI improves accessibility to education and supports more effective learning management in areas with limited technology access. This community service demonstrates that the application of AI has the potential to improve the quality of education in border regions, while also promoting the preservation of local culture and inclusivity within the education system.