Claim Missing Document
Check
Articles

Found 2 Documents
Search

Molecularly Conductive Behavior of Blended Polymer Electrolyte-based CMC/PVA Mohd Ali, Noor Saadiah; Zhang, Dishen; Nagao, Yuki; Samsudin, Ahmad Salihin
Makara Journal of Technology Vol. 23, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study investigated the electrical conduction and structural behavior of blended polymer electrolyte (BPE)-based carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA) in the development of solid-state electrochemical devices. Based on impedance spectroscopy and correlating Fourier transform infrared (FTIR) with thermogravimetric analysis, a framework was proposed to explain the structural enhancement of the BPE system. As revealed by FTIR, the optimum conductivity of CMC/PVA BPEs was 9.21 × 10−6 Scm−1 for 80:20 composition attributed to the intermolecular attraction between the polymers. Thermal stability of the CMC/PVA was influenced by the formation of a hydrogen bond between the hydroxyl (-OH), carboxylate (-COO-), and ether linkage (-COC-) functional groups. The finding provides insights into blended polymer electrolyte-based CMC/PVA, which is beneficial in designing safe, thin, and lightweight energy storage devices.
Ethylene Carbonate and Polyethylene Glycol as Efficient Plasticizers in CMC-PVA-NH4NO3-Based Polymer Electrolyte Mohd Ali, Noor Saadiah; Nagao, Yuki; Samsudin, Ahmad Salihin
Makara Journal of Technology Vol. 24, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study investigated the influence of plasticizers (polyethylene glycol [PEG] and ethylene carbonate [EC]) on the ionic conduction of CMC-PVA-NH4NO3. Blended biopolymer electrolytes (BBEs) based on carboxymethyl cellulose–polyvinyl alcohol (CMC-PVA) doped with ammonium nitrate (NH4NO3) were obtained via casting solution technique incorporated with PEG and EC, which acted as plasticizers. Electrical impedance spectroscopy (EIS) was conducted to evaluate the effect of plasticization on the ionic conduction properties. The ionic conductivity improved from 1.70 × 10−3 S/cm for un-plasticized BBEs to 3.92 × 10−3 S/cm for plasticized BBEs with EC and 3.00 × 10−3 S/cm for plasticized BBEs with PEG. The improvement indicated that the plasticizers weakened the Coulombic force and promoted further dissociation in the ionic dopant. The highest ionic conductivity was achieved for BBEs plasticized with EC, thereby suggesting the suitability of EC as plasticizer in this present system. The BBE system showed the Arrhenius characteristic at elevated temperatures and demonstrated increasing ionic conductivity. Dielectric properties of all BBE systems were found to improve upon the addition of EC and PEG, demonstrating their correlation with ionic conductivity.