Claim Missing Document
Check
Articles

Found 1 Documents
Search

Classification Classification of COVID-19 Monthly Cases Using Artificial Neural Network (ANN) Method Christina Natalia; Aniq A. Rohmawati; Sri Suryani Prasetyowati
Journal of Information System Research (JOSH) Vol 4 No 1 (2022): October 2022
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (771.691 KB) | DOI: 10.47065/josh.v4i1.2236

Abstract

This study proposes the MLP type ANN method with the influence of Cross-Validation evaluation using three K-Fold tests, namely 3, 5, and 8. The data used are the data that relate to COVID-19 cases issued from the Bandung Public Health Office, climate report from Bandung Meteorological, Climatological, and Geophysical Agency (BMKG), population data from Bandung Population Office, citizen’s educational history from the Bandung Education Office and the West Java Open Data website. The data also was gathered from 151 sub-districts in Bandung City, with a total of 22 attributes collected from November 2020 to December 2021. The ANN method is included in the deep learning process. Therefore, the number of hidden layers utilized has a significant impact on the performance of the model being constructed. The implementation of Cross-Validation evaluation with K=8 results in an accuracy value of up to 98% and an error metric measurement of 0.3404 for MAE and 0.5994 for RMSE. This study's objective is to provide information on the optimal K-Fold Cross Validation parameters used in this ANN method to provide better performance during building a classification model for confirmed Covid-19 patients.