Tika Apriliza
Universitas Andalas

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Bilangan Kromatik Lokasi Pada Graf Lobster L_(n,m,1) untuk 6≤m≤16 dan n=2,3,4 Tika Apriliza; DES WELYYANTI; LYRA YULIANTI
Jurnal Matematika UNAND Vol 11, No 2 (2022)
Publisher : Jurusan Matematika FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.11.2.95-103.2022

Abstract

Misalkan G = (V, E)  graf terhubung dan c suatu k-pewarnaan dari G. Kelas warna pada G adalah himpunan titik-titik yang berwarna i, dinotasikan dengan S_(i) untuk  1≤i≤k. Misalkan Π adalah suatu partisi terurut dari V(G) kedalam kelas-kelas warna yang saling bebas S_1,S_2, ...,S_k, dengan titik-titik di S_i diberi warna i, 1≤i≤k. Jarak suatu titik v ke S_i dinotasikan dengan (v,C_i) adalah min {d(v,x)|x  S_i}. Kode warna dari suatu titik v V didefinisikan  sebagai k-vektor yaitu:              (v)=(d(v,S_(1)), d(v,S_(2)), ...,d(v,S_(k)))dimana d(v,S_(i)) = min {d(v,x)|x  S_i}.  untuk 1≤i≤k .  Jika setiap titik yang berbeda di G memiliki kode warna yang berbeda untuk suatu Π maka  disebut pewarnaan lokasi untuk G. Jumlah warna minimum yang digunakan pada pewarnaan lokasi dari graf G disebut bilangan kromatik lokasi untuk G, dinotasikan dengan (G). Pada tulisan ini akan dibahas bilangan kromatik lokasi graf lobster L_(n,m,1) untuk 6≤m≤16 dan n=2,3,4.