Syarifah Dewi
Department of Biochemistry and Molecular Biology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Malondialdehyde and carbonyl levels in skeletal muscle tissues after intermittent hypobaric hypoxia exposures Syarifah Dewi; Alexander Rafael Satyadharma; Albertus Raditya Danendra; Wardaya
Acta Biochimica Indonesiana Vol. 5 No. 2 (2022): Acta Biochimica Indonesiana
Publisher : Indonesian Society for Biochemistry and Molecular Biology

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32889/actabioina.113

Abstract

Background: Hypobaric hypoxia is a state of decreased oxygen pressure at high altitudes that can lead to hypoxia and oxidative stress as a result. Skeletal muscle is one of the important organs that can be affected by oxidative stress and cause contractile dysfunction. Objective: This study aimed to evaluate the impact of intermittent hypobaric hypoxia on oxidative stress markers in rat skeletal muscle, by measuring malondialdehyde (MDA) and carbonyl levels. Methods: Twenty-five Wistar rats were allocated into five groups, including one control group and four hypoxic groups (I-IV). The hypoxic groups were exposed to an altitude of 25,000 feet for 5 minutes using hypobaric chamber in once (I), twice (II), three (III), and four (IV) times, with a 7-day interval period between exposures. The control group remained in normobaric conditions throughout the study. MDA levels were measured by thiobarbituric acid (TBA) test, while carbonyl levels were measured using 2,4-dinitrophenylhydrazine (DNPH) reagent. Results: The MDA level was significantly increased in group I compared to the control group (p=0.008). There were decreasing MDA levels in groups II, III, and IV compared to group I. The carbonyl level was significantly higher in group I than the control group (p=0.000), with an even higher level observed in group II. Although the carbonyl levels tended to decrease in groups III and IV, they still remained higher than those of the control group. Conclusion: Exposure to hypobaric hypoxia leads to an increase in MDA and carbonyl levels in the skeletal muscles, indicating an elevation of oxidative stress levels. However, the subsequent intermittent hypobaric hypoxia exposure resulted in a reduction in these levels, implying that skeletal muscles may adapt to hypoxic conditions.
Development of RNA interference-based therapy for rare genetic diseases Milya Urfa Ahmad; Syarifah Dewi
Acta Biochimica Indonesiana Vol. 7 No. 1 (2024): Acta Biochimica Indonesiana
Publisher : Indonesian Society for Biochemistry and Molecular Biology

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32889/actabioina.171

Abstract

In December 2022, the Indonesian Ministry of Health projected that rare diseases might affect 8–10% of the population, equating to approximately 27 million people. These diseases, often congenital, are linked to genetic inheritance or mutations, leading to structural or functional defects. Despite advancements in diagnostic and treatment methods, many rare diseases remain challenging for healthcare practitioners. RNA interference (RNAi) presents a promising therapeutic approach by enabling the selective inhibition of genes responsible for genetic disorders. RNAi employs small RNA molecules, such as small interfering RNA (siRNA) and microRNA (miRNA), to bind specific mRNA molecules and prevent their translation into proteins. Current research showed that RNAi-based therapies have the potential to treat various genetic diseases, including acute hepatic porphyria (AHP) and primary hyperoxaluria type 1 (PH1). However, the mechanisms of RNAi in hereditary disorders like AHP and PH1 require further documentation. RNAi offers several advantages, including gene-specific targeting, versatility in treating diverse genetic disorders, and scalability for mass production. Nonetheless, challenges remain, such as side effects, difficulties in targeting specific cells, and high development cost. Despite these obstacles, RNAi-based therapy holds significant potential for revolutionize the treatment of genetic disorders.