Oluwakemi Christiana Abikoye
University of Ilorin, Ilorin, Kwara State

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Improved authenticated elliptic curve cryptography scheme for resource starve applications Esau Taiwo Oladipupo; Oluwakemi Christiana Abikoye
Computer Science and Information Technologies Vol 3, No 3: November 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/csit.v3i3.p169-185

Abstract

Elliptic curve cryptography (ECC) remains the best approach to asymmetric cryptography when it comes to securing communication among communication partners in low-computing devices such as wireless sensor networks (WSN) and the Internet of Things (IoT) due to its effectiveness in generating small keys with a strong encryption mechanism. The ECC cuts down on power use and improves device performance, so it can be used in a wide range of devices that don't have a lot of resources. However, most of the existing ECC implementations suffer from implementation flaws that make them vulnerable to cryptanalysis attacks. In this study, flaws in the existing implementation of ECC are identified. A new scheme where the identified flaws are remedied was developed. The results of the security analysis show that the new scheme is an indistinguishable authenticated adaptive chosen ciphertext attack (IND-CCA3), resistant to malleability and man-in-the-middle attacks (MIMA). The results of comparative security analysis show that the mapping scheme employed in the new scheme maps any blocks of plaintext to distinct points on an elliptic curve, which makes it resistant to all attacks that the existing schemes are vulnerable to without having a negative effect on its encryption and decryption time, throughput, or power consumption.