Claim Missing Document
Check
Articles

Found 9 Documents
Search

Penentuan Upah Minimum Kota Berdasarkan Tingkat Inflasi Menggunakan Backpropagation Neural Network (BPNN) Yohannes, Ervin; Mahmudy, Wayan Firdaus; Rahmi, Asyrofa
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 2, No 1 (2015)
Publisher : Fakultas Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (913.176 KB)

Abstract

Upah Minimum Kota (UMK) adalah sebuah standardisasi upah atau gaji karyawan atau pegawai untuk diterapkan diperusahaan baik itu BUMN, BUMS, maupun perusahaan lain yang berskala besar. Faktor yang mempengaruhi UMK sangat banyak dan beragam salah satunya adalah rata-rata inflasi pengeluaran dimana terdapat 8 kategori yang dipakai. Tulisan ini memaparkan penggunaan Backpropagation Neural Network (BPNN) untuk memprediksi besarnya UMK. Pada tahap uji coba data dibagi menjadi dua bagian yaitu data latih dan data uji, dimana data latih digunakan untuk mencari jumlah iterasi, jumlah hidden layer, dan nilai learning rate yang optimal. Pengujian data latih memberikan hasil yakni jumlah iterasi optimal diperoleh pada saat iterasi 80, sedangkan untuk jumlah hidden layer yang optimal adalah sebanyak satu hidden layer dan untuk nilai learning rate optimal yakni pada saat bernilai 0.8. Semua variabel yang diperoleh dikatakan optimal karena memiliki rata-rata MSE paling kecil dibandingkan dengan data lainnya. Hasil yang diperoleh saat data uji dengan menggunakan iterasi, jumlah hidden layer, dan nilai learning rate yang optimal didapatkan hasil MSE sebesar 0.07280534710552478.
Clustering of Human Hand on Depth Image using DBSCAN Method Yohannes, Ervin; Utaminingrum, Fitri; Shih, Timothy K.
Journal of Information Technology and Computer Science Vol. 4 No. 2: September 2019
Publisher : Faculty of Computer Science (FILKOM) Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1131.492 KB) | DOI: 10.25126/jitecs.201942133

Abstract

In recent years, depth images are popular research in imageprocessing, especially in clustering field. The depth image can captureby depth cameras such as Kinect, Intel Real Sense, Leap Motion, and etc.Many objects and methods can be implemented in clustering field andissues. One of popular object is human hand since has many functionsand important parts of human body for daily routines. Besides, theclustering method has been developed for any goal and even combinewith another method. One of clustering method is Density-Based SpatialClustering of Applications with Noise (DBSCAN) which automaticclustering method consists of minimum points and epsilon. Define theepsilon in DBSCAN is important thing since the result depends on those.We want to look for the best epsilon for clustering human hand in thedepth images. We selected the epsilon from 5 until 100 for getting thebest clustering results. Moreover, those epsilons will be testing in threedistance to get accurate results.
Pre-Trained Convolutional Neural Network Benchmark For Multi-Class Weather Modeling Ramadhany, Sinta Dhea; Yohannes, Ervin
Journal of Informatics and Computer Science (JINACS) Article In Press(1)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstract— Weather forecasting plays a crucial role in reducing the risks of extreme events that threaten human safety, economic stability, and the environment. Traditional forecasting methods relying on manual observation have developed into modern approaches using satellite, radar, and computational models; however, prediction accuracy remains limited due to the complexity of atmospheric systems and data constraints. In this context, deep learning, particularly Convolutional Neural Networks (CNNs), provides significant potential for automatic weather classification through digital imagery. This study evaluates and compares the performance of four pre-trained CNN architectures VGG16, ResNet50, AlexNet, and InceptionV3 on the Kaggle “Multi-class Weather Dataset,” which contains 860 images categorized into four classes: Cloudy, Shine, Rain, and Sunrise. The methodology involves data augmentation, fine-tuning, and systematic experimentation with various hyperparameters and data split ratios to enhance model generalization. The evaluation metrics applied include accuracy, precision, recall, and F1-score. Experimental results reveal that InceptionV3 outperforms other models, achieving up to 98% training accuracy and 96% validation accuracy due to its effective multi-scale feature extraction and regularization. ResNet50 delivers balanced results with validation accuracy up to 94%, while AlexNet records relatively high detection counts but lower overall performance. In contrast, VGG16 yields the lowest accuracy among the tested models. These findings highlight InceptionV3 as the most robust architecture for weather image classification and emphasize the importance of model selection in balancing prediction accuracy and computational efficiency. The study contributes as a foundation for the development of deep learning-based weather recognition systems that can support early warning applications and disaster risk reduction. Keywords— Convolutional Neural Network, Weather Classification, ResNet50, VGG16, AlexNet, InceptionV3
A COMPARATIVE STUDY OF SUPERVISED FEATURE SELECTION METHODS FOR PREDICTING UANG KULIAH TUNGGAL (UKT) GROUPS Putri, Windy Chikita Cornia; Yustanti, Wiyli; Yohannes, Ervin
J-Icon : Jurnal Komputer dan Informatika Vol 13 No 2 (2025): October 2025
Publisher : Universitas Nusa Cendana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35508/jicon.v13i2.23893

Abstract

The manual classification of Uang Kuliah Tunggal (UKT) groups at Indonesian public universities is laborious, subjective, and error-prone, especially given the explosion of socio-economic data captured via online admission portals. In this study, we evaluate five feature selection techniques Chi-Square filter, Random Forest importance, Recursive Feature Elimination, LASSO embedded selection, and Exploratory Factor Analysis on a dataset of 9,369 applicants described by 53 socio-economic variables. Six classifiers (Decision Tree, Random Forest, SVM-RBF, K-Nearest Neighbor, and Naïve Bayes) were tuned via stratified 5-fold cross-validation within an 80:20 train-test split. Performance was measured by accuracy, macro-F1, and training time, and differences in weighted-average accuracy across feature-selection scenarios were assessed using the Friedman test (χ² = 15.06, p = 0.010). Results show that reducing to 13 features via LASSO (weighted-average accuracy 0.730) or Chi-Square (0.678) significantly outperforms both the full feature baseline (0.624) and the EFA baseline (0.303), while cutting computational costs by over 40%. We conclude that supervised feature selection particularly LASSO and Chi-Square enables simpler, faster, and more transparent UKT prediction without sacrificing accuracy. The novelty of this study lies in comparing five feature-selection methods within a standardized preprocessing pipeline on real UKT data from UNESA, resulting in a 13-feature subset aligned with the current UKT policy. This finding is ready to be integrated into an automated UKT verification system to enhance decision accuracy and efficiency.
Analysis of the Application of Machine Learning Algorithms for Classification of Toddler Nutritional Status Based on Anthropometric Data Yamasari, Yuni; Yogiyanti, Esti; Yohannes, Ervin
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 7 No. 4 (2025): November
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v7i4.110

Abstract

The rapid advancement of technology has required appropriate strategies to achieve accurate and optimal results. Among these, machine learning has become one of the most widely applied technologies across various domains, including healthcare, due to its ability to process large volumes of data and produce reliable predictions. One critical health problem that can benefit from these approaches is malnutrition among toddlers, which continues to pose challenges to growth, development, and long-term well-being. This analysis aims to identify the most effective and efficient algorithms for classifying the nutritional status of toddlers based on anthropometric data. The review is grounded in relevant journal articles aligned with the research topic, which serve as the primary sources for synthesis. The selected studies underwent four stages of identification, selection, evaluation, and analysis to ensure both credibility and reliability. The analysis focuses on three main aspects: dataset characteristics, algorithms applied, and outcomes reported. Based on algorithm usage, three implementation strategies were identified: single model, multi-model, and model combination. The overall findings reveal that studies utilizing datasets with fewer than 500 records can effectively apply algorithms such as Random Forest, Decision Tree, and Naïve Bayes Classifier, which consistently achieve accuracy rates above 90%. For datasets exceeding 10,000 records, the XGBoost algorithm is recommended due to its scalability and efficiency in handling large-scale data. For datasets ranging between 500 and 10,000 records, hybrid approaches such as the C4.5 algorithm combined with Particle Swarm Optimization are preferable, with previous studies demonstrating an accuracy of 94.49%. This review highlights that algorithm selection should be adjusted according to dataset size and clinical needs. The findings provide valuable insights to support researchers, practitioners, and policymakers in developing accurate and effective solutions for toddler nutrition assessment
Hybrid Autoencoder Architectures with LSTM and GRU Layers for Bitcoin Price Prediction Yamasari, Yuni; Nafisah, Nurun; Yohannes, Ervin
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 7 No. 4 (2025): November
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v7i4.132

Abstract

The high volatility of cryptocurrency markets, particularly Bitcoin, poses significant challenges for accurate price forecasting. To address this issue, this study evaluates the performance of four autoencoder-based deep learning architectures: AE-LSTM, AE-GRU, AE-LSTM-GRU, and AE-GRU-LSTM. The models were developed and tested using a univariate approach, where only the closing price was used as input, and two different window sizes (30 and 60) were applied to analyse the effect of historical sequence length on prediction accuracy. Several parameter configurations, including the number of epochs, dropout rate, and learning rate, were explored to determine the optimal model performance. The dataset comprises Bitcoin’s daily closing prices from 2018 to 2025, encompassing diverse market phases, including both bullish and bearish trends. Model performance was assessed using four evaluation metrics: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), the coefficient of determination (R²), and Mean Absolute Percentage Error (MAPE). The results indicate that the AE-LSTM-GRU consistently achieved the best overall performance across all configurations. For a window size of 30, it achieved an RMSE of 1.53067 and a MAPE of 1.98%, while for a window size of 60, the best performance recorded was an RMSE of 1.55217 and a MAPE of 2.09%. The hybrid structure combining LSTM’s capability to capture long-term dependencies with GRU’s efficiency in information decoding demonstrated strong robustness in modelling highly volatile time series. This study contributes to financial time series forecasting by presenting hybrid autoencoder architectures that strike a balance between predictive accuracy and computational efficiency, providing practical insights for researchers and practitioners in financial technology and cryptocurrency analytics
Penentuan Upah Minimum Kota Berdasarkan Tingkat Inflasi Menggunakan Backpropagation Neural Network (BPNN) Yohannes, Ervin; Mahmudy, Wayan Firdaus; Rahmi, Asyrofa
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 2 No 1: April 2015
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (913.176 KB) | DOI: 10.25126/jtiik.201521128

Abstract

Upah Minimum Kota (UMK) adalah sebuah standardisasi upah atau gaji karyawan atau pegawai untuk diterapkan diperusahaan baik itu BUMN, BUMS, maupun perusahaan lain yang berskala besar. Faktor yang mempengaruhi UMK sangat banyak dan beragam salah satunya adalah rata-rata inflasi pengeluaran dimana terdapat 8 kategori yang dipakai. Tulisan ini memaparkan penggunaan Backpropagation Neural Network (BPNN) untuk memprediksi besarnya UMK. Pada tahap uji coba data dibagi menjadi dua bagian yaitu data latih dan data uji, dimana data latih digunakan untuk mencari jumlah iterasi, jumlah hidden layer, dan nilai learning rate yang optimal. Pengujian data latih memberikan hasil yakni jumlah iterasi optimal diperoleh pada saat iterasi 80, sedangkan untuk jumlah hidden layer yang optimal adalah sebanyak satu hidden layer dan untuk nilai learning rate optimal yakni pada saat bernilai 0.8. Semua variabel yang diperoleh dikatakan optimal karena memiliki rata-rata MSE paling kecil dibandingkan dengan data lainnya. Hasil yang diperoleh saat data uji dengan menggunakan iterasi, jumlah hidden layer, dan nilai learning rate yang optimal didapatkan hasil MSE sebesar 0.07280534710552478.
A Performance Comparison of LSTM and GRU Architectures for Forecasting Daily Bitcoin Price Volatility Nafisah, Nurun; Yamasari, Yuni; Yohannes, Ervin
JIEET (Journal of Information Engineering and Educational Technology) Vol. 9 No. 2 (2025)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jieet.v9n2.p156-167

Abstract

The highly volatile movement of Bitcoin prices necessitates the use of prediction methods capable of accurately capturing complex and rapidly changing patterns. This study aims to compare the performance of two recurrent neural network architectures, namely Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), in forecasting Bitcoin prices based on historical time series data. The analysis was conducted using daily closing price data, with several parameter configurations applied, including dropout value, learning rate, and number of epochs at a window size of 30. The training process was carried out using a univariate approach to assess the fundamental ability of each model to learn temporal patterns without the influence of external variables. The results indicate that the GRU model consistently outperforms LSTM across most experimental settings. The best performance was achieved with 30 epochs, dropout 0.1, and a learning rate of 0.001, producing RMSE 1478.333, MAE 1000.900, R² 0.996081, and MAPE 1.973072. These metrics demonstrate a lower error level and a stronger fit to actual Bitcoin price movements. Moreover, a paired t-test confirmed that the performance gap between the two models is statistically significant. Overall, the findings suggest that the Gated Recurrent Unit architecture is more efficient in capturing nonlinear patterns and responding to the volatile dynamics of cryptocurrency price fluctuations, making it a promising approach for future predictive modeling in financial time series.
Optimizing UKT Prediction Based on Socio-Economic Features: A Multimodel Evaluation with Feature Selection Srategies Putri, Windy Chikita Cornia; Yustanti, Wiyli; Yohannes, Ervin
EDUTIC Vol 12, No 2: 2025
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/edutic.v12i2.31828

Abstract

Determining the tuition fee group (UKT) for new students in Indonesian public universities represents a complex challenge requiring an equitable, data-driven approach. This study introduces an integrative feature selection strategy that combines five popular techniques Chi-Square, Recursive Feature Elimination (RFE), LASSO Regression, Random Forest Importance, and Exploratory Factor Analysis (EFA) to extract the most relevant attributes from 53 socioeconomic variables of prospective students at Universitas Negeri Surabaya. As a novelty, the study identifies intersecting features consistently selected by all five methods and evaluates their impact on the performance of five classification algorithms: Support Vector Machine (SVM), Decision Tree, Random Forest, K-Nearest Neighbor (KNN), and Naïve Bayes. Experimental results demonstrate a significant improvement in accuracy, with SVM increasing from 0.7550 to 0.7810. These findings confirm that integrative feature selection can optimize model performance while reducing data complexity. This study provides a replicable methodological contribution for developing transparent and adaptive classification systems based on socioeconomic data in higher education contexts.