Romindo
Universitas Pelita Harapan

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Penerapan Metode Collaborative Filtering Dan Knowledge Item Based Terhadap Sistem Rekomendasi Kamera DSLR Romindo; Jefri Junifer Pangaribuan; Okky Putra Barus; Jusin
SATIN - Sains dan Teknologi Informasi Vol 8 No 2 (2022): SATIN - Sains dan Teknologi Informasi
Publisher : STMIK Amik Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (502.054 KB) | DOI: 10.33372/stn.v8i2.883

Abstract

Sistem rekomendasi adalah sistem yang dibuat dengan tujuan untuk membantu pengguna dalam mengetahui item yang diminati oleh mereka. Sistem rekomendasi banyak diimplementasikan di marketplace, sosial media dan untuk tujuan lainnya. Salah satu proses yang membutuhkan sistem rekomendasi adalah pada proses pemilihan kamera. Pemilihan kamera untuk fotografer yang belum berpengalaman menggunakan kamera menjadi salah satu permasalahan yang cukup penting dikarenakan banyaknya kamera yang bermunculan hingga saat ini. Proses pemilihan kamera biasanya dilakukan dengan bertanya kepada fotografer senior yang sudah terjun lama dalam bidang fotografi agar diberikan rekomendasi terkait kamera yang sesuai dengan kriteria. Proses konvensional tersebut tentunya akan memakan waktu yang sangat lama. Oleh karena permasalahan tersebut, maka perlu dilakukan penelitian untuk sebuah sistem informasi rekomendasi pada proses pemilihan kamera. Pada penelitian ini akan diterapkan 2 metode rekomendasi yaitu metode Collaborative Filtering dan Knowledge Item Based. Hasil penelitian menunjukkan bahwa sistem informasi rekomendasi kamera DSLR yang dibangun menerapkan metode Collaborative Filtering dan Knowledge Item Based dalam memberikan rekomendasi prediksi pilihan kamera berdasarkan pola rating dari user lainnya.
Classification of Hearing Loss Degrees with Naive Bayes Algorithm Okky Putra Barus; Romindo; Jefri Junifer Pangaribuan
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 7 No 4 (2023): August 2023
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v7i4.4683

Abstract

According to the World Health Organization (WHO), hearing loss is one of the fourth leading causes of disability. The number of people with hearing loss continues to increase yearly. This increase occurred due to delays in recognizing hearing loss, leading to delays in providing treatment. To solve this problem, one solution to deal with this is early identification to detect the degree of hearing loss. This research will use machine learning to classify the degree of hearing loss. The algorithm implemented in this study is naive Bayes. This study uses a data set from the Zenodo open access repository with 3105 raw data and 19 features. This study evaluates the performance of overall accuracy, precision, recall, and f1-score and classified four classes: mild, moderate, moderately severe, and severe. The methodology classification stages in this study include data preprocessing, data training, data testing, and evaluation. From evaluating the performance of the Naive Bayes algorithm, the classification results obtained the highest impacts in the form of 94% overall accuracy, 100% precision, 100% recall and 97% f1-score in classifying the degree of hearing loss.