Walat Ramadhan Ibrahim
University of Zakho

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

COVID-19 detection based on convolution neural networks from CT-scan images: a review Walat Ramadhan Ibrahim; Mayyadah Ramiz Mahmood
Indonesian Journal of Electrical Engineering and Computer Science Vol 29, No 3: March 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v29.i3.pp1668-1677

Abstract

The COVID-19 outbreak has been affecting the health of people all around the world. With the number of confirmed cases and deaths still rising daily, so the main aim is to detect positive cases as soon as and provide them with the necessary treatment. The utilization of imaging data including chest x-rays and computed tomography (CT) was proven that is would be beneficial for quickly diagnosing COVID-19. Since Computerized Tomography provides a huge number of images, recognizing these visual traits would be difficult and take enormous amounts of time for radiologists so automated diagnosis technologies including deep learning (DL) models are recently for COVID-19 screening in CT scans. This review paper presents different researches which used deep learning approaches including various models of convolutional neural networks (CNN) used in image classification tasks well, and large training, like ResNet, VGG, AlexNet, LeNet, GoogleNet, and others for COVID-19 diagnosing and severity assessments using chest CT images. As a result, automated COVID-19 analysis on CT images is essential to save medical personnel and essential time for disease prevention.