Easala Ravi Kondal
VIT-AP University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Hyperspectral image classification using Hyb-3D convolution neural network spectral partitioning Easala Ravi Kondal; Soubhagya Sankar Barpanda
Indonesian Journal of Electrical Engineering and Computer Science Vol 29, No 1: January 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v29.i1.pp295-303

Abstract

Hyperspectral image classification (HSIC) on remote sensing imaging has brought immersive achievement using artificial intelligence technology. In deep learning convolution neural networks (CNN), 2D-CNN, and 3D-CNN methods are widely used to classify the spectral-spatial bands of hyperspectral images (HSI). The proposed Hybrid 3D-CNN (H3D-CNN) model framework for deeper features extraction predicts classification accuracy in supervised learning. The model reduces the narrow gap between supervised and unsupervised learning and the complexity and cost of the previous models. The HSI classification analysis is carried out on real-world data sets of Indian pines Salinas datasets captured by Airborne visible, infrared imaging spectrometer (AVIRIS) sensors that performed superior classification accuracy results.