Zakiah Mohd Yusoff
School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA Johor Kampus Pasir Gudang, Johor, Malaysia.

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Preliminary study on agarwood essential oil and its classification techniques using machine learning Anis Hazirah 'Izzati Hasnu Al-Hadi; Aqib Fawwaz Mohd Amidon; Siti Mariatul Hazwa Mohd Huzir; Nurlaila Ismail; Zakiah Mohd Yusoff; Saiful Nizam Tajuddin; Mohd Nasir Taib
Indonesian Journal of Electrical Engineering and Computer Science Vol 29, No 2: February 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v29.i2.pp753-760

Abstract

Using essential oils derived from trees for pharmaceutical purposes, incense, aromatherapy, and other areas has expanded its popularity on the international market. However, since human sensory evaluation is still the primary technique used to grade essential oils in Malaysia, the classification technique for determining their grade is still below standard. Nonetheless, prior studies established new approaches for classifying the grade of essential oils by studying their chemical compounds. Therefore, agarwood essential oil was selected for the suggested model due to the increasing demand and the high cost of the world's natural raw materials. The support vector machine (SVM) using one versus all (OVA) approach was selected as the classifier for agarwood essential oil. This study provides an overview of essential oils and their prior research techniques. In addition, a review of SVM is conducted to demonstrate that the technique is appropriate for future studies.