Claim Missing Document
Check
Articles

Found 2 Documents
Search

Modeling a Wave on Mild Sloping Bottom Topography and Its Dispersion Relation Approximation Faizal Ade Rahmahuddin Abdullah; Elvi Syukrina Erianto
KUBIK Vol 7, No 1 (2022): KUBIK: Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/kubik.v7i1.18419

Abstract

Linear wave theory is a simple theory that researchers and engineers often use to study a wave in deep, intermediate, and shallow water regions. Many researchers mostly used it over the horizontal flat seabed, but in actual conditions, sloping seabed always exists, although mild. In this research, we try to model a wave over a mild sloping seabed by linear wave theory and analyze the influence of the seabed’s slope on the solution of the model. The model is constructed from Laplace and Bernoulli equations together with kinematic and dynamic boundary conditions. We used the result of the analytical solution to find the relation between propagation speed, wavelength, and bed slope through the dispersion relation. Because of the difference in fluid dispersive character for each water region, we also determined dispersion relation approximation by modifying the hyperbolic tangent form into hyperbolic sine-cosine and exponential form, then approximated it with Padé approximant. As the final result, exponential form modification with Padé approximant had the best agreement to exact dispersion relation equation then direct hyperbolic tangent form.
Model Matematika untuk Penyakit Infeksi Cacing Parasit pada Kuda Elvi Syukrina Erianto; Mia Siti Khumaeroh
SITEKIN: Jurnal Sains, Teknologi dan Industri Vol 20, No 1 (2022): Desember 2022
Publisher : Fakultas Sains dan Teknologi Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/sitekin.v20i1.20415

Abstract

Pada dasarnya, kuda merupakan inang bagi beberapa cacing parasit seperti Helminth. Spesies cacing parasit ini, contohnya Parascaris equorum, biasanya ditemukan dalam usus kecil kuda. Pada kasus infeksi yang parah, parasit ini dapat menyebabkan inefisiensi, kehilangan energi, dan terkadang kolik pada kuda. Dalam artikel ini, dibangun model matematika penyebaran penyakit infeksi cacing pada kuda, dengan mempertimbangkan siklus hidup cacing pada kuda dan di lapangan. Populasi kuda dibagi menjadi kompartemen kuda sehat , kuda ekspos, dan kuda terinfeksi Sementara kompartemen cacing terbagi menjadi telur  dan larva . Ada dua titik kesetimbangan yang akan dibahas yaitu titik kesetimbangan bebas penyakit dan titik kesetimbangan endemik. Rasio reproduksi dasar diperoleh dan simulasi numerik ditampilkan.