Priscilia Lovita Paelongan
Telkom University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Lung Cancer Prediction Model using Logistic Linear Regression with Imbalanced Dataset Priscilia Lovita Paelongan; Irma Palupi
Indonesia Journal on Computing (Indo-JC) Vol. 7 No. 2 (2022): August, 2022
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/INDOJC.2022.7.2.616

Abstract

Cancer is one of the leading causes of death worldwide. Cancer cases in Indonesia have now reached 4.8 million in 2018. Most cases are breast, cervix, and lung. Furthermore, we need to note that 43 percent of these cancer cases are preventable. This study uses a linear logistics regression model. Linear logistic regression models can be used for categoric datasets. The appropriate model is obtained after parameter assessment, test the significance of each affecting attribute, and test the suitability of the model. This is done to obtain prediction models and risk factors at the level of correlation of disease size. This method is relatively easy and conceptually practical, so it is possible to apply it to diagnose early symptoms of lung cancer. The results include a linear logistics regression model for early prediction of lung cancer patients based on symptoms, habits, and history of health diseases to see the likelihood that someone with a certain level of risk could have lung cancer. The factors that affect a person with lung cancer are difficulty swallowing, coughing, chronic diseases, fatigue, and age.