Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Intelligent Software Systems

Polynomial Regression Method and Support Vector Machine Method for Predicting Disease Covid-19 in Indonesia Bambang Purnomosidi Dwi Putranto; Moh. Abdul Kholik; Muhammad Agung Nugroho; Danny Kriestanto
Journal of Intelligent Software Systems Vol 2, No 1 (2023): July
Publisher : LPPM UTDI (d.h STMIK AKAKOM) Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26798/jiss.v2i1.931

Abstract

The COVID-19 pandemic has become a major threat to the entire country. According to the WHO report, COVID-19 is a severe acute respiratory syndrome transmitted through respiratory droplets resulting from direct contact with patients. This study of data history is then processed using data mining prediction methods, namely the Polynomial Regression method compared to the Support Vector Machine method. Of the two methods will be sought the most accurate method by testing accuracy with MAE, MSE, and also MAPE to get the results of covid-19 predictions in Indonesia. Based on the comparison of test results through various scenarios against both methods, the Polynomial Regression method obtained the smallest test value, resulting in an accuracy value of MAE = 4146.025749867596, MSE = 19031800.02642069, MAPE = 0.006174164877416524. Polynomial regression is the best-recommended method
Rule Based System to Support Decisions on Determining Employee Status (Lecturers) for Scholarship Student Graduates Hotma Sadariahta Sipayung; Widyastuti Andriyani; Bambang Purnomosidi Dwi Putranto; Danny Kriestanto
Journal of Intelligent Software Systems Vol 3, No 1 (2024): July 2024
Publisher : LPPM UTDI (d.h STMIK AKAKOM) Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26798/jiss.v3i1.1337

Abstract

Salah satu permasalahan yang terjadi di Universitas Teknologi Digital Indonesia (UTDI) adalah proses seleksi yayasan Dosen Tetap yang disebut-sebut baru untuk diterapkan kepada mahasiswa penerima calon beasiswa S2 di Magister Teknologi Informasi (MTI). UTDI Yogyakarta. Kriteria yang digunakan dalam aturan tersebut adalah Indeks Prestasi (IP) Semester 1, IP Semester 2, IP Semester 3, Indeks Prestasi Kumulatif (IPK), Makalah (karya ilmiah), Kerjasama, Disiplin, Komunikasi, Pra Tesis, Tesis, Nilai C. , dan Durasi Studi yang diperoleh dari MTI UTDI, selanjutnya akan menggunakan Algoritma C4.5 untuk menghasilkan pohon keputusan yang akan dipelajari aturan dalam sistem. Penelitian ini menggunakan kaidah yang diperoleh dari MTI UTDI oleh Ketua Program Studi (Kaprodi) yaitu 41 data latih dan 8 data uji. Menggunakan forward chaining sebagai metode dalam sistem pakar yang mencari solusi melalui permasalahan, kemudian menggunakan Algoritma C4.5 yang merupakan algoritma yang digunakan untuk membentuk pohon keputusan. Aturan yang terbentuk kemudian digunakan untuk memprediksi kelayakan lulusan beasiswa Magister menjadi Dosen Tetap, Dosen Kontrak, atau tidak memenuhi persyaratan. Hasil prediksi tersebut kemudian dievaluasi menggunakan Confusion Matrix dan memperoleh nilai akurasi sebesar 75%, Precision sebesar 77,78%, dan Recall sebesar 77,78%. Sehingga Algoritma C4.5 dengan menggunakan aplikasi RapidMiner cukup layak digunakan untuk mendukung pengambilan keputusan dalam pemilihan mahasiswa penerima beasiswa Magister yang akan diangkat menjadi Dosen Tetap, Dosen Kontrak maupun yang tidak memenuhi syarat sebagai Dosen di UTDI. Fakultas Teknologi Informasi