Moh. Abdul Kholik
Master of Information Technology Universitas Teknologi Digital Indonesia

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Polynomial Regression Method and Support Vector Machine Method for Predicting Disease Covid-19 in Indonesia Bambang Purnomosidi Dwi Putranto; Moh. Abdul Kholik; Muhammad Agung Nugroho; Danny Kriestanto
Journal of Intelligent Software Systems Vol 2, No 1 (2023): July
Publisher : LPPM UTDI (d.h STMIK AKAKOM) Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26798/jiss.v2i1.931

Abstract

The COVID-19 pandemic has become a major threat to the entire country. According to the WHO report, COVID-19 is a severe acute respiratory syndrome transmitted through respiratory droplets resulting from direct contact with patients. This study of data history is then processed using data mining prediction methods, namely the Polynomial Regression method compared to the Support Vector Machine method. Of the two methods will be sought the most accurate method by testing accuracy with MAE, MSE, and also MAPE to get the results of covid-19 predictions in Indonesia. Based on the comparison of test results through various scenarios against both methods, the Polynomial Regression method obtained the smallest test value, resulting in an accuracy value of MAE = 4146.025749867596, MSE = 19031800.02642069, MAPE = 0.006174164877416524. Polynomial regression is the best-recommended method