Reham H. Mohammed
Suez Canal University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Path tracking control of differential drive mobile robot based on chaotic-billiards optimization algorithm Reham H. Mohammed; Mohamed E. Aboelmorsy; Basem E. Elnaghi
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i2.pp1449-1462

Abstract

Mobile robots are typically depending only on robot kinematics control. However, when high-speed motions and highly loaded transfer are considered, it is necessary to analyze dynamics of the robot to limit tracking error. The goal of this paper is to present a new algorithm, chaotic-billiards optimizer (C-BO) to optimize internal controller parameters of a differential-drive mobile robot (DDMR)-based dynamic model. The C-BO algorithm is notable for its ease of implementation, minimal number of design parameters, high convergence speed, and low computing burden. In addition, a comparison between the performance of C-BO and ant colony optimization (ACO) to determine the optimum controller coefficient that provides superior performance and convergence of the path tracking. The ISE criterion is selected as a fitness function in a simulation-based optimization strategy. For the point of accuracy, the velocity-based dynamic compensation controller was successfully integrated with the motion controller proposed in this study for the robot's kinematics. Control structure of the model was tested using MATLAB/Simulink. The results demonstrate that the suggested C-BO, with steady state error performance of 0.6 percent compared to ACO's 0.8 percent, is the optimum alternative for parameter optimizing the controller for precise path tracking. Also, it offers advantages of quick response, high tracking precision, and outstanding anti-interference capability.
African vulture optimizer algorithm based vector control induction motor drive system Reham H. Mohammed; Ahmed M. Ismaiel; Basem E. Elnaghi; Mohamed E. Dessouki
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 3: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i3.pp2396-2408

Abstract

This study describes a new optimization approach for three-phase induction motor speed drive to minimize the integral square error for speed controller and improve the dynamic speed performance. The new proposed algorithm, African vulture optimizer algorithm (AVOA) optimizes internal controller parameters of a fuzzy like proportional differential (PD) speed controller. The AVOA is notable for its ease of implementation, minimal number of design parameters, high convergence speed, and low computing burden. This study compares fuzzy-like PD speed controllers optimized with AVOA to adaptive fuzzy logic speed regulators, fuzzy-like PD optimized with genetic algorithm (GA), and proportional integral (PI) speed regulators optimized with AVOA to provide speed control for an induction motor drive system. The drive system is simulated using MATLAB/Simulink and laboratory prototype is implemented using DSP-DS1104 board. The results demonstrate that the suggested fuzzy-like PD speed controller optimized with AVOA, with a speed steady state error performance of 0.5% compared to the adaptive fuzzy logic speed regulator’s 0.7%, is the optimum alternative for speed controller. The results clarify the effectiveness of the controllers based on fuzzy like PD speed controller optimized with AVOA for each performance index as it provides lower overshoot, lowers rising time, and high dynamic response.