Elang Parikesit
Rajamangala University of Technology Thanyaburi

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Control of robot-assisted gait trainer using hybrid proportional integral derivative and iterative learning control Elang Parikesit; Dechrit Maneetham; Petrus Sutyasadi
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp5967-5978

Abstract

An inexpensive exoskeleton of the lower limb was designed and developed in this study. It can be used as a gait trainer for persons with lower limb problems. It plays an essential role in lower limb rehabilitation and aid for patients, and it can help them improve their physical condition. This paper proposes a hybrid controller for regulating the lower limb exoskeleton of a robot-assisted gait trainer that uses a proportional integral and derivative (PID) controller combined with an iterative learning controller (ILC). The direct current motors at the hip and knee joints are controlled by a microcontroller that uses a preset pattern for the trajectories. It can learn how to monitor a trajectory. If the trajectory or load is changed, it will be able to follow the change. The experiment showed that the PID controller had the smallest overshoot, and settling time, and was responsible for system stability. Even if there are occasional interruptions, the tracking performance improves with the ILC.