Ibrahim Karim Abbas
Department of Physics, College of Science, University of Baghdad, Baghdad, 10071, Iraq

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Synthesis and Study of Structural Properties of Calcium Oxide Nanoparticles Produced by Laser-Induced Plasma and its Effect on Antibacterial Activity Ibrahim Karim Abbas; Kadhim Abdulwahid Aadim
Science and Technology Indonesia Vol. 7 No. 4 (2022): October
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3066.756 KB) | DOI: 10.26554/sti.2022.7.4.427-434

Abstract

A LIBS technique was used to investigate the antibacterial activity of calcium oxide nanoparticles (CaO NPs). CaO NPs were prepared using a Q-switched Nd: YAG pulsed laser with a fundamental wavelength of 1064 nm at different energies (400-600 mJ) and constant frequency (6 Hz). A calcium powder sample was prepared after being pressed into a disc with a diameter of 1 cm. Analyzing X-ray diffraction (XRD) showed the crystalline structure of CaO NPs, crystalline size was 30.99±2 and 34.20±2.2 nm for laser energy 500 and 600 mJ. (FE-SEM) to reveal the topography of produced CaO NPs, the results showed a homogenous compact and dense surface with the formation of CaO NPs like flakes, cubes, and tubes. Atomic force microscopy (AFM) has shown that the CaO NPs were nanoscale and had a coordinated surface structures. The results also revealed the stabilizing zeta potential of the prepared CaO NPs, average (ZP) -18.3±1.6 mV in 600 mJ and -8.8±2.3 mV for 500 mJ. Different laser energies used in preparing CaO NPs resulted in the varying killing of the number of bacteria Klebsiella pneumoniae and Staphylococcus aureus bacteria. Complete bacterial inhibition or cell growth inactivation was found when the laser energy prepared for the CaO NPs was 600 mJ.
Study the Impact of Laser Energy on Laser-Induced Copper Plasma Parameters By Spectroscopic Analysis Technique Ibrahim Karim Abbas
Science and Technology Indonesia Vol. 7 No. 4 (2022): October
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2368.01 KB) | DOI: 10.26554/sti.2022.7.4.508-513

Abstract

In this paper, spectroscopic analysis (OES) for copper (Cu) plasma was achieved at atmospheric pressure. Q switched Nd: YAG pulsed laser with a fundamental wavelength (1064 nm), energy range (500-800) mJ, frequency (6 Hz), and laser pulses (10-30 pulses) was applied to induce copper plasma. Based on the spectroscopic analysis, plasma parameters like electron temperature (Te), electron density (ne), Debye length (λD), and plasma frequency (fp) have been calculated. The results demonstrated that the laser energy affects all plasma parameters, with an electron temperature (Te) range of (0.6820-0.8949) eV and electron number density (ne) range of (13.667-17.235)×1017 cm−3. Also, the image of the place of laser bombardment of copper (Cu) metal shows three diameters or circles, each circle bears a different color from the other. It can be described as a crater, and the interaction of the laser with copper metal is obvious by laser ablation, and here the effect of the increased energy of the laser appears during the spectroscopic diagnosis and the process of metal bombardment.