Claim Missing Document
Check
Articles

Found 5 Documents
Search

Penerapan Regresi Data Panel Dinamis untuk Pemodelan Ekspor dan Impor di Asean Iga Amalia Yuniar; Dwi Endah Kusrini
Seminar Nasional Official Statistics Vol 2021 No 1 (2021): Seminar Nasional Official Statistics 2021
Publisher : Politeknik Statistika STIS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (296.268 KB) | DOI: 10.34123/semnasoffstat.v2021i1.784

Abstract

Perekonomian terbuka di suatu negara adalah negara yang mempunyai kegiatan perdagangan internasional seperti ekspor, impor, barang atau jasa serta dapat meminjam dari hasil pasar modal internasional. Tujuan dari penelitian adalah untuk menganalisis ekspor dan impor di wilayah beberapa negara ASEAN mulai periode tahun 2014 hingga tahun 2019. Metode estimasi parameter model adalah metode GMM (Generalized method of moment) karena penelitian ini menggunakan panel dinamis. Berdasarkan hasil analisis data, variabel yang berpengaruh signifikan positif terhadap model ekspor ASEAN adalah Growth GDP, REER sedangkan variabel GFCF berpengaruh secara negatif. Disamping itu, variabel yang berpengaruh siginifikan positif model impor ASEAN adalah Growth GDP dan Real Effective Exchange Rate.
Analisis Financial Distress Menggunakan Regresi Data Panel Annisa Ayu Lestari; Dwi Endah Kusrini
Seminar Nasional Official Statistics Vol 2021 No 1 (2021): Seminar Nasional Official Statistics 2021
Publisher : Politeknik Statistika STIS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (366.486 KB) | DOI: 10.34123/semnasoffstat.v2021i1.855

Abstract

A company certainly wants to avoid conditions that can lead to bankruptcy, one of the conditions that can put a company in danger of bankruptcy is financial distress. This study aims to describe financial distress and find out the factors that affect financial distress in retail companies. This research was conducted on retail subsector companies in the period 2015 to 2019 using data panel regression method. Predictor variables are current ratio (CR), net profit margin (NPM), total assets turnover (TATO) and price to book value (PBV). The financial ratio used to measure financial distress is debt service coverage ratio (DSCR). The results of the analysis show that more companies in the non-primary consumer goods sector than in primary are in financial distress. NPM has a significant effect on DSCR, while CR, TATO and PBV had no significant effect on DSCR. The coefficient of determination of the selected model is 83,90%. Keywords: Financial Distress, Panel Data Regression, Retail
Analisis Faktor-Faktor yang Mempengaruhi Produk Domestik Regional Bruto Berdasarkan Kondisi Infrastruktur di Jawa Timur Menggunakan Regresi Data Panel Rosa Viana Nur Addini; Dwi Endah Kusrini
Seminar Nasional Official Statistics Vol 2021 No 1 (2021): Seminar Nasional Official Statistics 2021
Publisher : Politeknik Statistika STIS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (360.367 KB) | DOI: 10.34123/semnasoffstat.v2021i1.956

Abstract

Kinerja ekonomi yang kuat dikaitkan dengan infrastruktur yang ada di suatu negara atau wilayah. Infrastruktur merupakan aspek penting, mesin penggerak perekonomian dan penopang utama unsur-unsur sistem sosial ekonomi dalam masyarakat. Tujuan dari penelitian ini untuk mengetahui karakteristik data dan faktor-faktor mana saja yang mempengaruhi Produk Domestik Regional Bruto (PDRB) berdasarkan kondisi infrastruktur di Jawa Timur pada tahun 2016 hingga 2019 menggunakan statistika deskriptif dan regresi data panel. Hasil analisis terpilih model terbaik REM (Random Effect Model) dengan variabel infrastruktur kesehatan, infrastruktur air, dan infrastruktur hotel, penginapan, dan restoran dengan pengaruh positif signifikan terhadap PDRB Jawa Timur dengan koefisien determinasi sebesar 72,35%, dimana model mampu menjelaskan variasi PDRB di Jawa Timur sebesar 72,35%, sedangkan 27,65% dijelaskan oleh variabel lain yang belum termasuk dalam model.
SIMULTANEOUS SPATIAL OF POVERTY AND HDI USING GS2SLS Nur Jihan Salsabiila; Dwi Endah Kusrini; Nur Azizah; Destri Susilaningrum
Media Bina Ilmiah Vol. 17 No. 12: Juli 2023
Publisher : LPSDI Bina Patria

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The SDGs program encourages change towards sustainable development which makes poverty alleviation the main goal. Poverty is a person's inability to meet the minimum standard of living that hinders the welfare of an individual. The benchmark for welfare is the Human Development Index (HDI). It is suspected that there are spatial influences between regions because, in terms of territoriality, the province of East Java has similarities in the value of the percentage of poor people and HDI in nearby areas. Poverty and HDI and vice versa have a relationship that affects each other, so modeling is done with a system of simultaneous similarities. This work used a queen contiguity weight matrix and the Generalized Spatial Two Stage Least Squares (GS2SLS) approach to analyze spatial simultaneous equations. This method can cope with autocorrelation and heteroskedasticity. The data used are the percentage of poor people and HDI as well as variables from previous studies that are thought to significantly affect poverty and HDI in 38 Regencies/Cities of East Java in 2019. The results showed that there was a negative reciprocal relationship between the percentage of poor people and HDI. The spatial effect is positive and significant on the HDI variables with GS2SLS Spatial Autoregressive (SAR) modeling, while the percentage of poor people without spatial effects is so modeled with Two Stage Least Square (2SLS). HDI and GRDP growth rates significantly affect the percentage of poor people, while HDI is significantly influenced by the percentage of poor people and population density.
Assessing the Impact of Household Socioeconomic Factors on Clean and Healthy Living Behaviors with Binary Logistic Regression: A Study in Probolinggo Regency Nafis, Moch Abdillah Nafis; Destri Susilaningrum; Brodjol Ulama; Dwi Endah Kusrini
EKSAKTA: Berkala Ilmiah Bidang MIPA Vol. 25 No. 04 (2024): Eksakta : Berkala Ilmiah Bidang MIPA (E-ISSN : 2549-7464)
Publisher : Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Negeri Padang, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/eksakta/vol25-iss04/539

Abstract

CHLB is a measure of livability in society. A high CHLB indicates a society that lives well. However, there is a problem in the probolinggo district that needs more effective public health interventions because of the area's fast population growth and a noticeable increase in infectious diseases. The adoption of Clean and Healthy Living Behaviors (CHLB) by Probolinggo district is the main focus of this study to find out who is still living below the applicable eligibility standards. In order to minimize the spread of infectious diseases and enhance general public health in Probolinggo Regency, policymakers and healthcare professionals are anticipated to find great value in the study's findings. It also examines the use of binary logistic regression with binary transformation all categorical variables as a supplemental technique for managing complex data relationships and enhancing predictive accuracy. In addition to addressing the pressing issues in public health, this study advances our knowledge of the socioeconomic factors that influence health in rural Indonesia.