Paul Tarwireyi
University of Zululand

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

BarkDroid: Android Malware Detection Using Bark Frequency Cepstral Coefficients Paul Tarwireyi; Alfredo Terzoli; Matthew O. Adigun
Indonesian Journal of Information Systems Vol. 5 No. 1 (2022): August 2022
Publisher : Program Studi Sistem Informasi Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/ijis.v5i1.6266

Abstract

Since their inaugural releases in 2007, Google’s Android and Apple’s iOS have grown to dominate the mobile OS market share. Currently, they jointly possess over 99% of the global market share with Android being the leading mobile Operating System of choice worldwide, controlling close to 70% of the market share. Mobile devices have enabled the exponential growth of a plethora of mobile applications that play key roles in enabling many use cases that are pivotal in our daily lives. On the other hand, access to a large pool of potential end users is available to both legitimate and nefarious applications, thus making mobile devices a burgeoning target of malicious applications. Current malware detection solutions rely on tedious, time-consuming, knowledge-based, and manual processes to identify malware. This paper presents BarkDroid, a novel Android malware detection technique that uses the low-level Bark Frequency Cepstral Coefficients audio features to detect malware. The results obtained outperform results obtained using other features on the same datasets. BarkDroid achieved 97.9% accuracy, 98.5% precision, an F1 score of 98.6%, and shorter execution times.