Claim Missing Document
Check
Articles

Found 17 Documents
Search
Journal : Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)

Implementasi Deteksi Rumor pada Twitter Menggunakan Metode Klasifikasi SVM Annisa Rahmaniar Dwi Pratiwi; Erwin Budi Setiawan
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 4 No 5 (2020): Oktober 2020
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (339.961 KB) | DOI: 10.29207/resti.v4i5.2031

Abstract

Twitter is one of the popular social network sites, that was first launched in 2006. This service allows users to spread real-time information. However, the information obtained is not always based on facts and sometimes deliberately used to spread rumors that cause fear to the public. So detection efforts are needed to overcome and prevent the spread of rumors on Twitter. Much research regarding the detection of rumors but is limited to English and Chinese. In this study, the authors built a system to detect Indonesian-language rumors based on the implementation of the SVM classification and feature selection using the TF-IDF weighting. Data collection was conducted in November 2019 to February 2020 using crawling methods by keywords and manual labeling process. Research data used topics around government and trending with 47,449 records and features combination based on users and tweets. Stages of research include the process of collecting data on the Twitter social networking site which is then carried out preprocessing consists of case-folding, URL removal, normalization, stopwords removal, and stemming. The next stage is feature selection, N-Gram modeling, classification, and evaluation using a confusion matrix. Based on the results of the study, the system gets good performance in the test scenario using 10% of testing data and unigram features with the highest accuracy value of 78.71%. As for features twitter that affected the detection of rumors covering the number of following, the number of like and mention.
Sistem Deteksi Hoax pada Twitter dengan Metode Klasifikasi Feed-Forward dan Back-Propagation Neural Networks Crisanadenta Wintang Kencana; Erwin Budi Setiawan; Isman Kurniawan
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 4 No 4 (2020): Agustus 2020
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (620.569 KB) | DOI: 10.29207/resti.v4i4.2038

Abstract

Social media is one of the ways to connect every individual in the world. It also used by irresponsible people to spread a hoax. Hoax is false news that is made as if it is true. It may cause anxiety and panic in society. It can affect the social and political conditions. This era, the most popular social media is Twitter. It is a place for sharing information and users around the world can share and receive news in short messages or called tweet. Hoax detection gained significant interest in the last decade. Existing hoax detection methods are based on either news-content or social-context using user-based features. In this study, we present a hoax detection based on FF & BP neural networks. In the developing of it, we used two vectorization methods, TF-IDF and Word2Vec. Our model is designed to automatically learn features for hoax news classification through several hidden layers built into the neural network. The neural network is actually using the ability of the human brain that is able to provide stimulation, process, and output. It works by the neuron to process every information that enters, then is processed through a network connection, and will continue learning to produce abilities to do classification. Our proposed model would be helpful to provide a better solution for hoax detection. Data collection obtained through crawling used Twitter API and retrieve data according to the keywords and hashtags. The neural networks highest accuracy obtained using TF-IDF by 78.76%. We also found that data quality affects the performance.
Implementasi Deteksi Rumor di Twitter Menggunakan Algoritma J48 Yoan Maria Vianny; Erwin Budi Setiawan
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 4 No 5 (2020): Oktober 2020
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (331.92 KB) | DOI: 10.29207/resti.v4i5.2059

Abstract

The existence of rumors on Twitter has caused a lot of unrest among Indonesians. Unrecognized validity confuses users for that information. In this study, an Indonesian rumor detection system is built by using J48 Algorithm in collaboration with Term Frequency Inverse Document Frequency (TF-IDF) weighting method. Dataset contains 47.449 tweets that have been manually labeled. This study offers new features, namely the number of emoticons in display name, the number of digits in display name, and the number of digits in username. These three new features are used to maximize information about information sources. The highest accuracy is obtained by 75.76% using 90% training data and 1.000 TF-IDF features in 1-gram to 3-gram combinations.
Identifikasi Berita Palsu (Hoax) pada Media Sosial Twitter dengan Metode Decision Tree C4.5 Brenda Irena; Erwin Budi Setiawan
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 4 No 4 (2020): Agustus 2020
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (297.768 KB) | DOI: 10.29207/resti.v4i4.2125

Abstract

Social media is a means to communicate and exchange information between people, and Twitter is one of them. But the information disseminated is not entirely true, but there is some news that is not in accordance with the truth or often called hoaxes. There have been many cases of spreading hoaxes that cause concern and often harm a particular individual or group. So in this research, the authors build a system to identify hoax news on social media Twitter using the Decision Tree C4.5 classification method to the 50,610 tweet data. What distinguishes this research from some researches before is the existence of several test scenarios, classification only, classification using weighting feature, and also classification using weighting feature and feature selection. The weighting method used is TF-IDF, and the feature selection uses Information Gain. The features used are also generated using n-grams consisting of unigram, bigram, and also trigrams. The final results show that the classification test that uses weighting feature and feature selection produces the best accuracy of 72.91% with a ratio of 90% training data and 10% test data (90:10) and the number of features used is 5000 in unigram features.
Semantic Approach for Big Five Personality Prediction on Twitter Ghina Dwi Salsabila; Erwin Budi Setiawan
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 5 No 4 (2021): Agustus 2021
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (418.395 KB) | DOI: 10.29207/resti.v5i4.3197

Abstract

Personality provides a deep insight of someone and has an important part in someone’s job performance. Predicting personality through social media has been studied on several research. The problem is how to improve the performance of personality prediction system. The purpose of this research is to predict personality on Twitter users and increase the performance of the personality prediction system. An online survey using Big Five Inventory (BFI) questionnaire has been distributed and gathered 295 Twitter users with 511,617 tweets data. In this research, we experiment on two different methods using Support Vector Machine (SVM), and the combination of SVM and BERT as the semantic approach. This research also implements Linguistic Inquiry Word Count (LIWC) as the linguistic feature for personality prediction system. The results showed that combination of these two methods achieve 79.35% accuracy score and with the implementation of LIWC can improve the accuracy score up to 80.07%. Overall, these results showed that the combination of SVM and BERT as the semantic approach with the implementation of LIWC is recommended to gain a better performance for the personality prediction system.
Implementation Word2Vec for Feature Expansion in Twitter Sentiment Analysis Naufal Adi Nugroho; Erwin Budi Setiawan
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 5 No 5 (2021): Oktober2021
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (399.111 KB) | DOI: 10.29207/resti.v5i5.3325

Abstract

Abstract Twitter is a microblog-based social media site launched on July 13, 2006. In March 2020, 476.696 tweets about the government policy in COVID-19 spread on Twitter were captured by the Institute for Development of Economics and Finance (Indef). Government policy has a standard meaning, namely a decision systematically made by the government with specific goals and objectives relating to the public interest, whether carried out directly or indirectly. Sentiment analysis analyzes people’s opinions, sentiments, evaluations, attitudes, and emotions from written language. In this decade, Sentiment Analysis is has become a trendy research area. The purpose of this paper is to focus how to implement word2vec using similarity word as a feature expansion for minimize the vocabulary mismatch in Twitter Sentiment Analysis using “word embeddings”. This research contains 11.395 tweets for a dataset, where the dataset will be used in two classifications: Support Vector Machine Algorithm and Artificial Neural Network Algorithm. The output of Word2Vec will be used for feature expansion in this research, where the algorithm of expansion will check in each row in the corpus where has a similarity vector with that word and will replace the word with the similarity of this words if the value is 0. The dataset in Feature Expansion is using 142.545 articles from Indonesian media. The result of this research is ANN is better than SVM, where the ANN without feature expansion gets 68.89 % and using feature expansion gets 72.58 %. For SVM, the final accuracy without feature expansion is 63.95 %, and using feature expansion gets 68.56 %. This research proves that feature expansion can improve the final accuracy.
Hate Speech Detection on Twitter in Indonesia with Feature Expansion Using GloVe Febiana Anistya; Erwin Budi Setiawan
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 5 No 6 (2021): Desember 2021
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (400.201 KB) | DOI: 10.29207/resti.v5i6.3521

Abstract

Twitter is one of the popular social media to channel opinions in the form of criticism and suggestions. Criticism could be a form of hate speech if the criticism implies attacking something (an individual, race, or group). With the limit of 280 characters in a tweet, there is often a vocabulary mismatch due to abbreviations which can be solved with word embedding. This study utilizes feature expansion to reduce vocabulary mismatches in hate speech on Twitter containing Indonesian language by using Global Vectors (GloVe). Feature selection related to the best model is carried out using the Logistic Regression (LR), Random Forest (RF), and Artificial Neural Network (ANN) algorithms. The results show that the Random Forest model with 5.000 features and a combination of TF-IDF and Tweet corpus built with GloVe produce the best accuracy rate between the other models with an average of 88,59% accuracy score, which is 1,25% higher than the predetermined Baseline. The number of features used is proven to improve the performance of the system.
Feature Expansion Word2Vec Untuk Analisis Sentimen Kebijakan Publik di Twitter Alvi Rahmy Royyan; Erwin Budi Setiawan
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 6 No 1 (2022): Februari 2022
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (363.774 KB) | DOI: 10.29207/resti.v6i1.3525

Abstract

Social media users, especially on Twitter, can freely express opinions or other information in the form of tweets about anything, including responding to a public policy. In a written tweet, there is a limit of 280 characters per tweet and this allows for problems such as vocabulary mismatches. Therefore, in this study, the feature expansion Word2vec method was applied to overcome when the vocabulary mismatches occur. This study develops and compares the Twitter sentiment analysis system using the feature expansion Word2vec method with the Logistic Regression (LR) and Support Vector Machine (SVM) classification algorithms and the system without the feature expansion Word2Vec method. The results of this study, the feature expansion Word2Vec method on the SVM classification algorithm succeeded in increasing the system accuracy up to 0,99% with an accuracy value of 78,99%.
Optimization Prediction of Big Five Personality in Twitter Users Gita Safitri; Erwin Budi Setiawan
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 6 No 1 (2022): Februari 2022
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (380.58 KB) | DOI: 10.29207/resti.v6i1.3529

Abstract

Various kinds of information can be acquired from social media platforms; one of them is on Twitter. User biographical information and tweets are the essential assets for research that can describe the Big Five Personality, including openness, conscientiousness, extraversion, agreeableness, and neuroticism. Several previous studies have tried the prediction of Big Five Personality. However, the authors found problems in how to optimize the work of the personality prediction system. So, in this study, Big Five Personality predictions were carried out on users of Twitter and improved the performance of the personality prediction system. We implement optimization techniques such as sampling, feature selection, and hyperparameter tuning to enhance the performance. This study also applies linguistic feature extraction, such as LIWC and TF-IDF. By using 287 Twitter users that have permitted their data to be crawled acquired from an online survey using Big Five Inventory (BFI), and applying all optimization techniques, the average accuracy result is 84.22% which is a 74.44% gain over the specified baseline.
Word2Vec on Sentiment Analysis with Synthetic Minority Oversampling Technique and Boosting Algorithm Rayhan Rahmanda; Erwin Budi Setiawan
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 6 No 4 (2022): Agustus 2022
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (386.752 KB) | DOI: 10.29207/resti.v6i4.4186

Abstract

Customer opinion is an important aspect in determining the success of a company or service provider. By determining the sentiment of the existing opinion, the company can use it as an evaluation material to improve the quality of the service or product provided. Sentiment analysis can be used as a measure of opinion sentiment with input data in the form of a corpus which will be classified into positive or negative classes to obtain the level of customer satisfaction with a product or service. Aspect-based sentiment analysis can be used by companies to analyze more specifically and find out what aspects need to be improved. In this research, an aspect-based sentiment analysis was conducted on Telkomsel users on Twitter. The data used is 16,992 tweets from users who discuss several aspects such as Telkomsel's services and signals in Twitter. In this research Word2Vec was used for feature expansion to minimize vocabulary mismatch caused by limited words in tweets. The results showed that Word2Vec, Synthetic Minority Oversampling Technique (SMOTE), and Boosting algorithm combination with Logistic Regression classifier achieve highest accuracy of 95.10% for signal aspect and using hyperparameters makes the service aspect get the highest accuracy of 93.34%.
Co-Authors Abdullah, Athallah Zacky Adriana, Kaysa Azzahra Adyatma, I Made Darma Cahya Agung Toto Wibowo Ahmad Zahri Ruhban Adam Aji Reksanegara Aji, Hilman Bayu Alvi Rahmy Royyan Anang Furkon RIfai Anindika Riska Intan Fauzy Annisa Aditsania Annisa Cahya Anggraeni Annisa Cahya Anggraeni Annisa Rahmaniar Dwi Pratiwi Arie Ardiyanti Arki Rifazka Arsytania, Ihsani Hawa Athirah Rifdha Aryani Aufa Ab'dil Mustofa Aydin, Raditya Bagas Teguh Imani Bayu Muhammad Iqbal Bayu Surya Dharma Sanjaya Billy Anthony Christian Martani Bintang Ramadhan, Rifaldy Brenda Irena Brigita Tenggehi Cahyudi, Ridho Maulana Crisanadenta Wintang Kencana Damarsari Cahyo Wilogo Daniar Dwi Pratiwi Daniar Dwi Pratiwi Dede Tarwidi Dedy Handriyadi Dery Anjas Ramadhan Dhinta Darmantoro Diaz Tiyasya Putra Dion Pratama Putra, Dion Pratama Diyas Puspandari Evi Dwi Wahyuni Faadhilah, Adhyasta Naufal Faidh Ilzam Nur Haq Farid, Husnul Khotimah Fathurahman Alhikmah Fathurahman Alhikmah Fazira Ansshory, Azrina Febiana Anistya Feby Ali Dzuhri Fhina Nhita Fhina Nhita Fida Nurmala Nugraha Fikri Maulana, Fikri Firdaus, Dzaki Afin Fitria, Mahrunissa Azmima Fitria Gde Bagus Janardana Abasan, I Ghina Dwi Salsabila Gita Safitri Grace Yohana Grace Yohana Hafiza, Annisaa Alya Hanif Reangga Alhakiem Hildan Fawwaz Naufal Husnul Khotimah Farid I Gusti Ayu Putu Sintha Deviya Yuliani I Kadek Candradinata Ibnu Sina, Muhammad Noer Ilyana Fadhilah Inggit Restu Illahi Inggit Restu Illahi Irma Palupi Isep Mumu Mubaroq Isman Kurniawan Kacaribu, Isabella Vichita Kamil, Ghani Kamil, Nabilla Kartika Prameswari Kemas Muslim Lhaksmana Kevin Usmayadhy Wijaya Khamil, Muhammad Khamil Khoirunnisa, Sanabila Luthfi Firmansah M. Arif Bijaksana Mahmud Imrona Mansel Lorenzo Nugraha Marissa Aflah Syahran Marissa Aflah Syahran Maulina Gustiani Tambunan Mela Mai Anggraini Moh Adi Ikfini M Moh. Hilman Fariz Muhammad Afif Raihan Muhammad Faiq Ardyanto Putro Muhammad Khiyarus Syiam Muhammad Kiko Aulia Reiki Muhammad Nur Ilyas Muhammad Shiba Kabul Muhammad Tsaqif Muhadzdzib Ramadhan Mustofa, Aufa Ab'dil Nabilla Kamil Naufal Adi Nugroho Naufal Razzak , Robith Nilla, Arliyanna Nindya Erlani, Dea Alfatihah Nisa Maulia Azahra Nur Ihsan Putra Munggaran Nuril Adlan , Muhammad Prahasto, Girindra Syukran Putri, Karina Khairunnisa Rafi Anandita Wicaksono Raisa Sianipar Rakhmat Rifaldy Ramadhan, Ananta Ihza Ramadhan, Helmi Sunjaya Ramadhani, Andi Nailul Izzah Ramadhanti, Windy Rayhan Rahmanda Refka Muhammad Furqon Regina Anatasya Rudiyanto Rendo Zenico Riaji, Dwi Hariyansyah Rizki Annas Sholehat Roji Ellandi Saleh, Abd Salsabil, Adinda Arwa Sanjaya, Bayu Surya Dharma Sari Ernawati Saut Sihol Ritonga Septian Nugraha Kudrat Septian Nugraha Kudrat Setiawan, Rizki Tri Shakina Rizkia Siti Inayah Putri Sri Suryani Sri Suryani Sukmawati Dwi Lestari Syafa Fahreza Syafa Fahreza Syahdan Naufal Nur Ihsan Valentino, Nico Wicaksono, Galih Wasis Wida Sofiya Widiarta, I Wayan Abi Widjayanto, Leonardus Adi Widyanto, Jammie Reyhan Wijaya, Kevin Usmayadhy Windy Ramadhanti Yoan Maria Vianny Yuliant Sibaroni Zahwa Dewi Artika Zakaria, Aditya Mahendra ZK Abdurahman Baizal