Claim Missing Document
Check
Articles

Found 17 Documents
Search
Journal : Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)

Aspect Based Sentiment Analysis with FastText Feature Expansion and Support Vector Machine Method on Twitter Muhammad Afif Raihan; Erwin Budi Setiawan
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 6 No 4 (2022): Agustus 2022
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (393.449 KB) | DOI: 10.29207/resti.v6i4.4187

Abstract

Social media such as Twitter has now become very close to society. Twitter users can express current issues, their opinions, product reviews, and many other things both positive and negative. Twitter is also used by companies to monitor the assessment of their products among the public as insight that will be used to evaluate what aspects of their products need to be further developed. Twitter with its limitation of only allowing users to post a maximum tweet of 280 characters will make a lot of abbreviated and difficult to understand words used, so it will allow vocabulary mismatch problems to occur. Therefore, in this paper, research conducted on aspect-based sentiment analysis of Telkomsel’s products from the aspects of signal and service by applying feature expansion using Fasttext word embedding to overcome vocabulary mismatch problem and classification with the Support Vector Machine (SVM) method. Sampling technique with Synthetic Minority Oversampling Technique (SMOTE) used to overcome data imbalance. The experimental results show that feature expansion can increase the performance of model. The final results obtained F1-Score value of the model for the signal aspect increased by 27.91% with F1-Score 95.93%, and for the service aspect increased by 42.36% with F1-Score 94.53%.
Memory-based Collaborative Filtering on Twitter Using Support Vector Machine Classification Anang Furkon RIfai; Erwin Budi Setiawan
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 6 No 5 (2022): Oktober 2022
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (502.89 KB) | DOI: 10.29207/resti.v6i5.4270

Abstract

Nowadays, watching films at home is one of people's entertainment. Netflix is a service provider for watching films and provides many types of film genres. However, of the many films available, it makes users confused to choose which film to watch first. The solution to the problem is a system that provides recommendations for the best films to watch based on user ratings. Twitter is still people's favorite social media to express their feelings, thoughts, and criticisms. In this system, tweets serve as input data that will be processed into data with rating values. This research implemented a recommendation system based on user ratings from tweets using collaborative filtering combined with Support Vector Machine (SVM) classification and implemented it on user-based and item-based. The test results in this study show that Collaborative Filtering gets the best RMSE value results on item-based 0.5911 and 0.8162 on user-based. The Support Vector Machine (SVM) classification algorithm using hyperparameter tuning produces item-based values with a precision of 85.03% and recall of 90.71%, while user-based values with a precision of 87.75% and recall of 88.95%.
Big Five Personality Assessment Using KNN method with RoBERTA Athirah Rifdha Aryani; Erwin Budi Setiawan
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 6 No 5 (2022): Oktober 2022
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v6i5.4394

Abstract

Personality is the general way a person responds to and interacts with others. Personality is also often defined as the quality that distinguishes individuals. Social media was created to help people communicate remotely and easily. These personalities fall into five categories known as the Big Five personality traits, namely Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism (OCEAN). The use of K-Nearest Neighbour (KNN) is a method of classifying objects based on the training data closest to them. To overcome the data imbalance during training data, we use K-Means SMOTE (Synthetic Minority Oversampling Technique). Other features such as LIWC (Linguistic Inquiry Word Count), Information Gain, Robustly Optimized BERT Approach (RoBERTa), and hyperparameter tuning can improve the performance of the systems we build. The focus of this study is to present an analysis of Twitter user behavior that can be used to predict the personality of the Big Five Personality using the KNN method. The Important aspect to consider when using this method, namely accuracy in classifying the Big Five Personalities. The experimental results show that the accuracy of the KNN method is 72.09%, which is 95.28% gain above the specified baseline.
Aspect-Based Sentiment Analysis on Twitter Using Logistic Regression with FastText Feature Expansion Hanif Reangga Alhakiem; Erwin Budi Setiawan
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 6 No 5 (2022): Oktober 2022
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v6i5.4429

Abstract

Social media has recently been widely used by users, especially Indonesians, as a place to express themselves in sentences, pictures, sounds, or videos. Twitter is one of the social media favored by people of diverse ages. Twitter is a social media that provides features like social media in general. However, Twitter has a unique feature where users can send or read text messages limited to only a few characters. Therefore, user tweets with topics related to a particular product can be utilized by companies to become input in the development of these products. This research was conducted using tweet data on the topic of Telkomsel, which is divided into two aspects, namely signal and service. Aspect-based sentiment analysis of Telkomsel was carried out using Logistic Regression with FastText feature expansion to reduce vocabulary mismatch in tweets so that the classification stage can be performed optimally. In addition, the Synthetic Minority Oversampling Technique (SMOTE) sampling method was applied to overcome data imbalance. The test results prove that feature expansion can improve F1-Score values for signal and service aspects. For the signal aspect, F1-Score increased by 3.33% from the baseline with a value of 96.48%. While for the service aspect, F1-Score increased by 12.91% from the baseline with a value of 95.57%.
Naïve Bayes-Support Vector Machine Combined BERT to Classified Big Five Personality on Twitter Billy Anthony Christian Martani; Erwin Budi Setiawan
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 6 No 6 (2022): Desember 2022
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v6i6.4378

Abstract

Twitter is one of the most popular social media used to interact online. Through Twitter, a person's personality can be determined based on that person's thoughts, feelings, and behavior patterns. A person has five main personalities likes Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism. This study will make five personality predictions using the Naïve Bayes method – Support Vector Machine, Synthetic Minority Over Sampling Technique (SMOTE), Linguistic Inquiry Word Count (LIWC), and Bidirectional Encoder from Transformers Representations (BERT). A questionnaire was distributed to people who used Twitter to collect and become a dataset in this research. The dataset obtained will be processed into SMOTE to balance the data. Linguistic Inquiry Word Count is used as a linguistic feature and BERT will be used as a semantic approach. The Naïve Bayes method is used to perform the weighting and the Support Vector Machine is used to classify Big Five Personalities. To help improve accuracy, the Optuna Hyperparameter Tuning method will be added to the Naïve Bayes Support Vector Machine model. This study has an accuracy of 87.82% from the results of combining SMOTE, BERT, LIWC, and Tuning where the accuracy increases from the baseline.
Detecting Fake News on Social Media Combined with the CNN Methods Anindika Riska Intan Fauzy; Erwin Budi Setiawan
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 7 No 2 (2023): April 2023
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v7i2.4889

Abstract

Social media platforms are created to facilitate human social life as technology develops. Twitter is one of the most popular and frequently used social media for exchanging information. This social media platform disseminates real-time and complete information. Unfortunately, there are not a few tweets that contain false information or are often referred to as hoaxes. Those hoaxes that existed on Twitter are very troubling for society. Fake news or hoaxes can cause misunderstandings in receiving information. Therefore, this research aimed at developing a system that can detect hoaxes on Twitter to anticipate their spread, which can be detrimental to related parties. The system being developed uses a deep learning approach with the Convolutional Neural Network (CNN), Term Frequency-Inverse Document Frequency (TF-IDF), Bidirectional Encoder Representations from Transformers (BERT), and Global Vectors (GloVe). The results of this study display the fake news detected by the system using the CNN method with baseline, BERT, and GloVe. The data have been adjusted to the keywords related to fake news and spread on online media, such as Hoax or Not from Detik.com, CekFakta from Kompas.com, etc. The results show the highest accuracy of 98.57% using CNN with a split ratio of 90:10, baseline unigram-bigram, BERT, and Top10 corpus tweet+IndoNews with an increase of 4.7%.
Sentiment Analysis on Social Media with Glove Using Combination CNN and RoBERTa Diaz Tiyasya Putra; Erwin Budi Setiawan
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 7 No 3 (2023): Juni 2023
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v7i3.4892

Abstract

Twitter is a popular social media platform that allows users to share short message’s opinion and engage in real-time conversations on a wide range of topics known as tweet. However, tweets often have a complicated and unclear context, which makes it difficult to determine the actual emotion. Therefore, sentiment analysis is required to see the tendency of an opinion, whether the opinion tends to be positive, negative, or neutral. Researchers or institutions can find out how the response and emotions of an issue are happening and make good decisions. With the large user of Twitter social media in Indonesia, sentiment analysis will be carried out using deep learning Convolutional Neural Network (CNN), Term Frequency-Inverse Document Frequency (TF-IDF), Robustly Optimized BERT Pretraining Approach (RoBERTa), Synthetic Minority Over-sampling Technique (SMOTE), and Global Vector (Glove). In this research, the dataset used is trending topics with hashtags related to government policies on Twitter social media and obtained through crawling. By using 30.811 data, the result shows the highest accuracy of 95.56% using CNN with a split ratio of 90:10, baseline unigram, RoBERTa, SMOTE, and Top10 corpus tweet with an increase 10.1%.
Co-Authors Abdullah, Athallah Zacky Adriana, Kaysa Azzahra Adyatma, I Made Darma Cahya Agung Toto Wibowo Ahmad Zahri Ruhban Adam Aji Reksanegara Aji, Hilman Bayu Alvi Rahmy Royyan Anang Furkon RIfai Anindika Riska Intan Fauzy Annisa Aditsania Annisa Cahya Anggraeni Annisa Cahya Anggraeni Annisa Rahmaniar Dwi Pratiwi Arie Ardiyanti Arki Rifazka Arsytania, Ihsani Hawa Athirah Rifdha Aryani Aufa Ab'dil Mustofa Aydin, Raditya Bagas Teguh Imani Bayu Muhammad Iqbal Bayu Surya Dharma Sanjaya Billy Anthony Christian Martani Bintang Ramadhan, Rifaldy Brenda Irena Brigita Tenggehi Cahyudi, Ridho Maulana Crisanadenta Wintang Kencana Damarsari Cahyo Wilogo Daniar Dwi Pratiwi Daniar Dwi Pratiwi Dede Tarwidi Dedy Handriyadi Dery Anjas Ramadhan Dhinta Darmantoro Diaz Tiyasya Putra Dion Pratama Putra, Dion Pratama Diyas Puspandari Evi Dwi Wahyuni Faadhilah, Adhyasta Naufal Faidh Ilzam Nur Haq Farid, Husnul Khotimah Fathurahman Alhikmah Fathurahman Alhikmah Fazira Ansshory, Azrina Febiana Anistya Feby Ali Dzuhri Fhina Nhita Fhina Nhita Fida Nurmala Nugraha Fikri Maulana, Fikri Firdaus, Dzaki Afin Fitria, Mahrunissa Azmima Fitria Gde Bagus Janardana Abasan, I Ghina Dwi Salsabila Gita Safitri Grace Yohana Grace Yohana Hafiza, Annisaa Alya Hanif Reangga Alhakiem Hildan Fawwaz Naufal Husnul Khotimah Farid I Gusti Ayu Putu Sintha Deviya Yuliani I Kadek Candradinata Ibnu Sina, Muhammad Noer Ilyana Fadhilah Inggit Restu Illahi Inggit Restu Illahi Irma Palupi Isep Mumu Mubaroq Isman Kurniawan Kacaribu, Isabella Vichita Kamil, Ghani Kamil, Nabilla Kartika Prameswari Kemas Muslim Lhaksmana Kevin Usmayadhy Wijaya Khamil, Muhammad Khamil Khoirunnisa, Sanabila Luthfi Firmansah M. Arif Bijaksana Mahmud Imrona Mansel Lorenzo Nugraha Marissa Aflah Syahran Marissa Aflah Syahran Maulina Gustiani Tambunan Mela Mai Anggraini Moh Adi Ikfini M Moh. Hilman Fariz Muhammad Afif Raihan Muhammad Faiq Ardyanto Putro Muhammad Khiyarus Syiam Muhammad Kiko Aulia Reiki Muhammad Nur Ilyas Muhammad Shiba Kabul Muhammad Tsaqif Muhadzdzib Ramadhan Mustofa, Aufa Ab'dil Nabilla Kamil Naufal Adi Nugroho Naufal Razzak , Robith Nilla, Arliyanna Nindya Erlani, Dea Alfatihah Nisa Maulia Azahra Nur Ihsan Putra Munggaran Nuril Adlan , Muhammad Prahasto, Girindra Syukran Putri, Karina Khairunnisa Rafi Anandita Wicaksono Raisa Sianipar Rakhmat Rifaldy Ramadhan, Ananta Ihza Ramadhan, Helmi Sunjaya Ramadhani, Andi Nailul Izzah Ramadhanti, Windy Rayhan Rahmanda Refka Muhammad Furqon Regina Anatasya Rudiyanto Rendo Zenico Riaji, Dwi Hariyansyah Rizki Annas Sholehat Roji Ellandi Saleh, Abd Salsabil, Adinda Arwa Sanjaya, Bayu Surya Dharma Sari Ernawati Saut Sihol Ritonga Septian Nugraha Kudrat Septian Nugraha Kudrat Setiawan, Rizki Tri Shakina Rizkia Siti Inayah Putri Sri Suryani Sri Suryani Sukmawati Dwi Lestari Syafa Fahreza Syafa Fahreza Syahdan Naufal Nur Ihsan Valentino, Nico Wicaksono, Galih Wasis Wida Sofiya Widiarta, I Wayan Abi Widjayanto, Leonardus Adi Widyanto, Jammie Reyhan Wijaya, Kevin Usmayadhy Windy Ramadhanti Yoan Maria Vianny Yuliant Sibaroni Zahwa Dewi Artika Zakaria, Aditya Mahendra ZK Abdurahman Baizal