Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Journal of Computer System and Informatics (JoSYC)

Recommender System Based on Tweets with Singular Value Decomposition and Support Vector Machine Classification Rafi Anandita Wicaksono; Erwin Budi Setiawan
Journal of Computer System and Informatics (JoSYC) Vol 3 No 4 (2022): August 2022
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josyc.v3i4.2072

Abstract

In modern times, the movie industry is growing rapidly. Netflix is one of the platforms that can be used to watch movies and provides many types of genres and movie titles. With so many genres and movie titles sometimes making it difficult for people to choose a movie to watch, one solution to the problem is a recommendation system that can recommend movies based on user ratings. One method in the recommendation system is collaborative filtering. One of the algorithms contained in collaborative filtering is singular value decomposition. Twitter is one of the places where people often write their opinions about the movies they have watched, from people's tweets on Twitter will be processed into rating value data. In this system, tweets become input that is processed into data that has a rating. This research implements a user-based recommendation system based on ratings from tweets using collaborative filtering combined with the Singular Value Decomposition (SVD) algorithm and Support Vector Machine (SVM) classification and implemented it on user-based and item-based. This research aims to implement a system that combines collaborative filtering techniques with the Singular Value Decomposition (SVD) algorithm and Support Vector Machine (SVM) classification. With the hope of producing a good movie recommendation model and providing accurate predictions for recommended and non-recommended movies. The test results in this study show that Collaborative Filtering gets the best RMSE value of 0.8162 on user-based and 0.5911 on item-based. The combination of Singular Value Decomposition (SVD) algorithm and Support Vector Machine (SVM) classification using hyperparameter tuning resulted in 81% precision and 81% recall for user-based while 80% precision and 80% recall for item-based.
Sentiment Analysis Based on Aspects Using FastText Feature Expansion and NBSVM Classification Method Sukmawati Dwi Lestari; Erwin Budi Setiawan
Journal of Computer System and Informatics (JoSYC) Vol 3 No 4 (2022): August 2022
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josyc.v3i4.2202

Abstract

Telkomsel is a service that the people of Indonesia widely use. Complaints from users referring to Telkomsel's service and signal aspects are often made in Twitter tweets with harsh or good language. This is done because users continue to demand to get better service. Therefore, an aspect-based sentiment analysis technique is needed to determine a person's view of each aspect, such as Telkomsel's service and signal aspects. Aspect-based sentiment analysis is a solution to find out the opinions of Telkomsel users based on their aspects. In its implementation, the NBSVM method is used as a classification model that is proven to work well compared to other methods, namely MNB and SVM. The implementation of the expansion of the FastText feature can affect the level of performance model, and the best results are obtained in the Top 1 feature on the signal aspect and Top 5 on the service aspect with a combination of Twitter corpus and news. In this study, the data used is unbalanced and has been handled by applying SMOTE and AdaBoost techniques to the FastText feature expansion model. Based on the results of the tests that have been carried out, SMOTE can handle data imbalances compared to AdaBoost. The performance results of the FastText feature expansion model after SMOTE are applied to get F1-Score 91.24% in the signal aspect and F1-Score 88.75% in the service aspect.
Recommender System with User-Based and Item-Based Collaborative Filtering on Twitter using K-Nearest Neighbors Classification Muhammad Shiba Kabul; Erwin Budi Setiawan
Journal of Computer System and Informatics (JoSYC) Vol 3 No 4 (2022): August 2022
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josyc.v3i4.2204

Abstract

Netflix is one of the most widely used applications for watching movies online. There are various movie titles that can be watched by users, so a recommendation system is needed to help users who feel confused in choosing movie titles. Twitter is a social media used to express ideas, thoughts, and feelings. Not a few Twitter users who conduct movie discussions, with the movie discussion can be converted into a rating that can be used in the recommendation system. Collaborative Filtering is one of the methods of the recommendation system, by recommending based on the similarity between users (user-based) and based on items that have similarities with user-selected items (item-based). In this research, the Collaborative Filtering method is combined with K-Nearest Neighbors classification which obtains an RMSE value for user-based 1.8244 and item-based 0.5449. K-Nearest Neighbors gets 91.22% precision and 91.07% recall for user-based, while item-based gets 89.44% precision and 91.22% recall with the optimal K as a parameter is 3.
2024 Presidential Election Sentiment Analysis in News Media Using Support Vector Machine Bayu Muhammad Iqbal; Kemas Muslim Lhaksmana; Erwin Budi Setiawan
Journal of Computer System and Informatics (JoSYC) Vol 4 No 2 (2023): Februari 2023
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josyc.v4i2.3051

Abstract

The 2024 presidential election is an event for all Indonesian people to determine their best leader. The presidential and vice presidential candidates are also competing to give their best efforts so that they can be elected as President and Vice President. The news media also provide news related to the 2024 presidential election with various titles that can interest their readers. Not infrequently the titles raised contain words that have sentiments, both positive and negative. In order to facilitate the analysis of the sentiments of these news titles, it is necessary to build a system that can detect the sentiments of these titles. In this study, we built a sentiment analysis system using the Support Vector Machine (SVM) method on news headline data obtained from online news media to detect whether news headlines contain positive or negative sentiments. For feature exctraction we compare the effect of FastText word embedding with TF-IDF for feature extraction. In the SVM method, several experiments were carried out on the attributes of C, kernel, gamma, and the ratio of the test data. The results obtained are a FastText can outperform TF-IDF for feature extraction. Also, combination of Kernel, C, and gamma values that give the best accuracy score of rbf, 1, and auto respectively at a test data ratio of 90:10, with an accuracy score of 99%.
Co-Authors Abdullah, Athallah Zacky Adriana, Kaysa Azzahra Agung Toto Wibowo Ahmad Zahri Ruhban Adam Aji Reksanegara Aji, Hilman Bayu Alvi Rahmy Royyan Anang Furkon RIfai Anindika Riska Intan Fauzy Annisa Aditsania Annisa Cahya Anggraeni Annisa Cahya Anggraeni Annisa Rahmaniar Dwi Pratiwi Arie Ardiyanti Arki Rifazka Arsytania, Ihsani Hawa Athirah Rifdha Aryani Aufa Ab'dil Mustofa Aydin, Raditya Bagas Teguh Imani Bayu Muhammad Iqbal Bayu Surya Dharma Sanjaya Billy Anthony Christian Martani Brenda Irena Brigita Tenggehi Crisanadenta Wintang Kencana Damarsari Cahyo Wilogo Daniar Dwi Pratiwi Daniar Dwi Pratiwi Dea Alfatihah Nindya Erlani Dede Tarwidi Dedy Handriyadi Dery Anjas Ramadhan Dhinta Darmantoro Diaz Tiyasya Putra Dion Pratama Putra, Dion Pratama Diyas Puspandari Dwi Hariyansyah Riaji Faidh Ilzam Nur Haq Famardi Putra Muhammad Raffly Raffly Fathurahman Alhikmah Fathurahman Alhikmah Fazira Ansshory, Azrina Febiana Anistya Feby Ali Dzuhri Fhina Nhita Fhina Nhita Fida Nurmala Nugraha Fikri Maulana, Fikri Firdaus, Dzaki Afin Fitria, Mahrunissa Azmima Fitria Gde Bagus Janardana Abasan, I Ghina Dwi Salsabila Gita Safitri Grace Yohana Grace Yohana Hanif Reangga Alhakiem Hildan Fawwaz Naufal Husnul Khotimah Farid I Gusti Ayu Putu Sintha Deviya Yuliani I Kadek Candradinata I Made Darma Cahya Adyatma Ibnu Sina, Muhammad Noer Ilyana Fadhilah Inggit Restu Illahi Irma Palupi Isabella Vichita Kacaribu Isep Mumu Mubaroq Isman Kurniawan Kamil, Ghani Kartika Prameswari Kemas Muslim Lhaksmana Kevin Usmayadhy Wijaya Khoirunnisa, Sanabila Luthfi Firmansah M. Arif Bijaksana Mahmud Imrona Mansel Lorenzo Nugraha Marissa Aflah Syahran Marissa Aflah Syahran Maulina Gustiani Tambunan Mela Mai Anggraini Moh Adi Ikfini M Moh. Hilman Fariz Muhammad Afif Raihan Muhammad Faiq Ardyanto Putro Muhammad Khiyarus Syiam Muhammad Kiko Aulia Reiki Muhammad Nur Ilyas Muhammad Shiba Kabul Muhammad Tsaqif Muhadzdzib Ramadhan Nabilla Kamil Naufal Adi Nugroho Naufal Razzak , Robith Nilla, Arliyanna Nisa Maulia Azahra Nur Ihsan Putra Munggaran Nuril Adlan , Muhammad Prahasto, Girindra Syukran Rafi Anandita Wicaksono Raisa Sianipar Rakhmat Rifaldy Ramadhan, Ananta Ihza Ramadhan, Helmi Sunjaya Rayhan Rahmanda Refka Muhammad Furqon Regina Anatasya Rudiyanto Rendo Zenico Ridho Maulana Cahyudi Rifaldy Bintang Ramadhan Rizki Annas Sholehat Roji Ellandi Salsabil, Adinda Arwa Sari Ernawati Saut Sihol Ritonga Septian Nugraha Kudrat Septian Nugraha Kudrat Setiawan, Rizki Tri Shakina Rizkia Siti Inayah Putri Sri Suryani Sri Suryani Sukmawati Dwi Lestari Syafa Fahreza Syahdan Naufal Nur Ihsan Valentino, Nico Wida Sofiya Widiarta, I Wayan Abi Widjayanto, Leonardus Adi Widyanto, Jammie Reyhan Windy Ramadhanti Yoan Maria Vianny Yuliant Sibaroni Zahwa Dewi Artika Zakaria, Aditya Mahendra ZK Abdurahman Baizal