Claim Missing Document
Check
Articles

Found 6 Documents
Search
Journal : Jurnal Teknik Informatika (JUTIF)

FINE-GRAINED SENTIMENT ANALYSIS IN SOCIAL MEDIA USING GATED RECURRENT UNIT WITH SUPPORT VECTOR MACHINE Wida Sofiya; Erwin Budi Setiawan
Jurnal Teknik Informatika (Jutif) Vol. 4 No. 3 (2023): JUTIF Volume 4, Number 3, June 2023
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2023.4.3.855

Abstract

Social media platforms are widely used to share opinions, leading to a large growth of text data on the internet. This data can be a key source of up-to-date and inclusive information by conducting sentiment analysis. Typically, sentiment analysis research classifies binary based on the polar values generated. However, this has its limitations, such as classifying sentences containing positive and negative expressions, leading to incorrect predictions. Fine-grained sentiment analysis provides more precise results by associating values with more than two classification targets. The objective of this study is to carry out sentiment analysis at a fine-grained level related to public policy in Indonesia using the GRU-SVM model with feature extraction and expansion techniques. However, sentiment analysis research still faces challenges in NLP. Deep learning have successfully overcome the challenges of traditional machine learning models in terms of efficiency and performance. This study proposes GRU-SVM model. GRU is used because it can adaptively control dependencies, making it more efficient in memory usage, while SVM is used as it is state-of-the-art in sentiment analysis. Result of the study show that the selection of word representation techniques, the addition of feature extraction techniques, datasets, data ratios, and feature expansion are crucial in the model testing process. The GRU-SVM model achieved the best performance with an accuracy of 96.02%. Overall, the results of this study demonstrate that the GRU-SVM method is effective in analyzing sentiments in Indonesian tweets.
Depression Detection using Convolutional Neural Networks and Bidirectional Long Short-Term Memory with BERT variations and FastText Methods Widjayanto, Leonardus Adi; Setiawan, Erwin Budi
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 3 (2025): JUTIF Volume 6, Number 3, Juni 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.3.4874

Abstract

Depression has become a significant public health concern in Indonesia, with many individuals expressing mental distress through social media platforms like Twitter. As mental health issues like depression are increasingly prevalent in the digital age, social media provides a valuable avenue for automated detection via text, though obstacles such as informal language, vagueness, and contextual complexity in social media complicate precise identification. This study aims to develop an effective depression detection model using Indonesian tweets by combining Convolutional Neural Networks (CNN) and Bidirectional Long Short-Term Memory (BiLSTM). The dataset consisted of 58,115 tweets, labeled into depressed and non-depressed categories. The data were preprocessed, followed by feature extraction using BERT and feature expansion using FastText. The FastText model was trained on three corpora: Tweet, IndoNews, and combined Tweet+IndoNews corpus; the total corpus will be 169,564 entries. The best result was achieved by BiLSTM model with 84.67% accuracy, a 1.94% increase from the baseline, and the second best was the BiLSTM-CNN hybrid model achieved 84.61 with an accuracy increase of 1.7% from the baseline. These result indicate that combining semantic feature expansion with deep learning architecture effectively improves the accuracy of depression detection on social media platforms. These insights highlight the importance of integrating semantic enrichment and contextual modeling to advance automated mental health diagnostics in Indonesian digital ecosystems.
TOPIC CLASSIFICATION ON TWITTER USING CNN WITH WORD2VEC FEATURE EXPANSION Bintang Ramadhan, Rifaldy; Budi Setiawan, Erwin
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 1 (2024): JUTIF Volume 5, Number 1, February 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.1.1342

Abstract

Twitter is a social networking site that enables users to communicate with their followers by sending them short messages known as "tweets." Each tweet has a character limit of 280 characters. The minimum limit of tweets resulted in writing short tweets and increased use of word variations. This makes tweets difficult to understand without the help of the topic, thus tweets should be classified. This study aims to classify topics of Twitter using word2vec feature expansion to decrease vocabulary ambiguities in topic classification. This type of research is system design research. Feature expansion is a machine learning technique used to extract new features (or variables) from the dataset's existing features. A model's complexity and expressive power are intended to be increased through feature expansion in order to improve performance and generalization. Data were processed using Convolutional Neural Network (CNN). The results indicate that there is an important contribution in increasing understanding of topic classification in Twitter data with Word2Vec, and the CNN application is able to assist some obstacles in analyzing short text with high word variations.
FILM RECOMMENDATION USING CONTENT-BASED USING ARTIFICIAL NEURAL NETWORK METHOD AND ADAM OPTIMIZATION Riaji, Dwi Hariyansyah; Setiawan, Erwin Budi
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 1 (2024): JUTIF Volume 5, Number 1, February 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.1.1729

Abstract

This research aims to develop a more accurate and relevant content-based film recommendation system from the Netflix and Disney+ streaming platforms using the ANN method. Movie recommendation systems are a popular solution to help users find movies that match their preferences. The ANN method develops a model to learn complex patterns from film features. Additionally, Adam optimization is used to improve the speed and accuracy of the model training process. The advantage of using an ANN is its ability to learn complex patterns and improve the performance of the recommendation system over time. Adam Optimization helps improve the speed, accuracy and quality of ANN models. From this research, researchers, based on the evaluation results using the confusion matrix, obtained an accuracy value of 88.30%, using a split ratio of 80:20 and a learning rate of 0.04469992592930794. This means that most classifications can detect correctly according to sufficient data. Combining these two methods allows the film recommendation system to provide better recommendations as more data becomes available.
Depression Detection in Indonesian X Social Media Text using Convolutional Neural Networks and Long Short-Term Memory with TF- IDF and FastText Methods Putri, Karina Khairunnisa; Setiawan, Erwin Budi
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 2 (2025): JUTIF Volume 6, Number 2, April 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.2.4206

Abstract

Depression is a growing mental health issue in the modern era, with social media offering a unique opportunity for automated detection through text analysis. However, challenges such as unstructured language, ambiguity, and contextual complexity in social media text hinder accurate detection. This research aims to develop and evaluate a hybrid deep learning model to detect depression in Indonesian social media text. A data set of 50523 entries was obtained and cleaned and TF-IDF was used for feature extraction while FastText was used for feature expansion. The classification was done by using Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and a combination of both CNN and LSTM models and the performance of the models was measured using the accuracy, precision and recall scores. The experimental results showed that the LSTM model gave the best result in terms of accuracy which is 83.58%, the second best was the LSTM-CNN hybrid model with an accuracy of 83.20%. The current study thus provides a new approach for identifying depression in Indonesian language data and can be said to significantly advance the fields of informatics and computer science. It also shows how AI can be utilized in improving mental health practices and in designing better social media environments. The findings of this study contribute to the growing body of research on cross-cultural mental health detection and highlight the importance of developing language-specific machine learning models.
Enhancing Cyberbullying Detection on Platform 'X' Using IndoBERT and Hybrid CNN-LSTM Model Hafiza, Annisaa Alya; Setiawan, Erwin Budi
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 2 (2025): JUTIF Volume 6, Number 2, April 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.2.4321

Abstract

Cyberbullying on social media platforms has become widespread in society. Cyberbullying can take many forms, including hate speech, trolling, adult content, racism, harassment, or rants. One social media platform that has many cyberbullies is Twitter, which has been renamed 'X'. The anonymous nature of this 'X' platform allows users from all over the world to commit cyberbullying as they can freely share their thoughts and expressions without having to account for their identity. This research aims to explore the influence of IndoBERT’s semantic features on hybrid deep learning models for cyberbullying detection while integrating TF-IDF feature extraction and FastText feature expansion to enhance text classification performance. Specifically, this study examines how IndoBERT’s semantic capabilities affect the hybrid deep learning model in detecting cyberbullying on platform 'X'. This study has 30,084 tweets with a hybrid deep learning approach that combines CNN and LSTM. In the IndoBERT scenario, IndoBERT features were first combined with TF-IDF, then expanded using FastText before being applied to the hybrid deep learning model. The test results produced the highest accuracy rate by: CNN (80.69%), LSTM (80.67%), CNN- LSTM (81.18%), CNN-LSTM-IndoBERT (82.05%). This research contributes to informatics by integrating hybrid deep learning (CNN-LSTM) with IndoBERT and TF-IDF, demonstrating its effectiveness in improving cyberbullying detection in Indonesian text. Future research can explore the use of other transformer-based models such as RoBERTa or ALBERT to enhance contextual understanding in cyberbullying classification.
Co-Authors Abdullah, Athallah Zacky Adriana, Kaysa Azzahra Adyatma, I Made Darma Cahya Agung Toto Wibowo Ahmad Zahri Ruhban Adam Aji Reksanegara Aji, Hilman Bayu Alvi Rahmy Royyan Anang Furkon RIfai Anindika Riska Intan Fauzy Annisa Aditsania Annisa Cahya Anggraeni Annisa Cahya Anggraeni Annisa Rahmaniar Dwi Pratiwi Arie Ardiyanti Arki Rifazka Arsytania, Ihsani Hawa Athirah Rifdha Aryani Aufa Ab'dil Mustofa Aydin, Raditya Bagas Teguh Imani Bayu Muhammad Iqbal Bayu Surya Dharma Sanjaya Billy Anthony Christian Martani Bintang Ramadhan, Rifaldy Brenda Irena Brigita Tenggehi Cahyudi, Ridho Maulana Crisanadenta Wintang Kencana Damarsari Cahyo Wilogo Daniar Dwi Pratiwi Daniar Dwi Pratiwi Dede Tarwidi Dedy Handriyadi Dery Anjas Ramadhan Dhinta Darmantoro Diaz Tiyasya Putra Dion Pratama Putra, Dion Pratama Diyas Puspandari Evi Dwi Wahyuni Faadhilah, Adhyasta Naufal Faidh Ilzam Nur Haq Farid, Husnul Khotimah Fathurahman Alhikmah Fathurahman Alhikmah Fazira Ansshory, Azrina Febiana Anistya Feby Ali Dzuhri Fhina Nhita Fhina Nhita Fida Nurmala Nugraha Fikri Maulana, Fikri Firdaus, Dzaki Afin Fitria, Mahrunissa Azmima Fitria Gde Bagus Janardana Abasan, I Ghina Dwi Salsabila Gita Safitri Grace Yohana Grace Yohana Hafiza, Annisaa Alya Hanif Reangga Alhakiem Hildan Fawwaz Naufal Husnul Khotimah Farid I Gusti Ayu Putu Sintha Deviya Yuliani I Kadek Candradinata Ibnu Sina, Muhammad Noer Ilyana Fadhilah Inggit Restu Illahi Inggit Restu Illahi Irma Palupi Isep Mumu Mubaroq Isman Kurniawan Kacaribu, Isabella Vichita Kamil, Ghani Kamil, Nabilla Kartika Prameswari Kemas Muslim Lhaksmana Kevin Usmayadhy Wijaya Khamil, Muhammad Khamil Khoirunnisa, Sanabila Luthfi Firmansah M. Arif Bijaksana Mahmud Imrona Mansel Lorenzo Nugraha Marissa Aflah Syahran Marissa Aflah Syahran Maulina Gustiani Tambunan Mela Mai Anggraini Moh Adi Ikfini M Moh. Hilman Fariz Muhammad Afif Raihan Muhammad Faiq Ardyanto Putro Muhammad Khiyarus Syiam Muhammad Kiko Aulia Reiki Muhammad Nur Ilyas Muhammad Shiba Kabul Muhammad Tsaqif Muhadzdzib Ramadhan Mustofa, Aufa Ab'dil Nabilla Kamil Naufal Adi Nugroho Naufal Razzak , Robith Nilla, Arliyanna Nindya Erlani, Dea Alfatihah Nisa Maulia Azahra Nur Ihsan Putra Munggaran Nuril Adlan , Muhammad Prahasto, Girindra Syukran Putri, Karina Khairunnisa Rafi Anandita Wicaksono Raisa Sianipar Rakhmat Rifaldy Ramadhan, Ananta Ihza Ramadhan, Helmi Sunjaya Ramadhani, Andi Nailul Izzah Ramadhanti, Windy Rayhan Rahmanda Refka Muhammad Furqon Regina Anatasya Rudiyanto Rendo Zenico Riaji, Dwi Hariyansyah Rizki Annas Sholehat Roji Ellandi Saleh, Abd Salsabil, Adinda Arwa Sanjaya, Bayu Surya Dharma Sari Ernawati Saut Sihol Ritonga Septian Nugraha Kudrat Septian Nugraha Kudrat Setiawan, Rizki Tri Shakina Rizkia Siti Inayah Putri Sri Suryani Sri Suryani Sukmawati Dwi Lestari Syafa Fahreza Syafa Fahreza Syahdan Naufal Nur Ihsan Valentino, Nico Wicaksono, Galih Wasis Wida Sofiya Widiarta, I Wayan Abi Widjayanto, Leonardus Adi Widyanto, Jammie Reyhan Wijaya, Kevin Usmayadhy Windy Ramadhanti Yoan Maria Vianny Yuliant Sibaroni Zahwa Dewi Artika Zakaria, Aditya Mahendra ZK Abdurahman Baizal