Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : TEKNIK INFORMATIKA

Genetic Algorithm Optimization of Hybrid LSTM-AutoEncoder in Tourism Recommendation System Bayu Surya Dharma Sanjaya; Erwin Budi Setiawan
JURNAL TEKNIK INFORMATIKA Vol 17, No 2: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v17i2.39760

Abstract

The tourism industry has rapid growth and has become one of the world's leading economic industries in recent years due to advances in information technology, such as the internet and social media. However, the overwhelming amount of information often makes it difficult for travelers to decide on their preferred travel destination. To address these issues, this research proposes a tourism recommendation system that combines Content-Based Filtering and Hybrid LSTM-AE, which is optimized using Genetic Algorithm (GA). There is no research that has developed a recommendation system using a combination of these methods and optimized using GA. So that this research can contribute to providing personalized recommendations and higher accuracy. The dataset consists of 9,504 ratings collected from the Ministry of Tourism and Creative Economy, Twitter, and web sources. The system was able to achieve a rating prediction accuracy of 96.82% by applying SMOTE to handle data imbalance and implementing a GA approach to the Hybrid LSTM-AE model. Accuracy has increased by 18.7% from the baseline model without using SMOTE and optimization. These results underscore that a strong integration between natural language processing and genetically optimized deep learning provides more accurate recommendations.
Optimizing the Learning Rate Hyperparameter for Hybrid BiLSTM-FFNN Model in a Tourism Recommendation System Aufa Ab'dil Mustofa; Erwin Budi Setiawan
JURNAL TEKNIK INFORMATIKA Vol 17, No 2: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v17i2.40250

Abstract

Indonesia, with its abundant natural resources, is rich in captivating tourist attractions. Tourism, a vital economic sector, can be significantly influenced by digitalization through social media. However, the overwhelming amount of information available can confuse tourists when selecting suitable destinations. This research aims to develop a tourism recommendation system employing content-based filtering (CBF) and hybrid Bidirectional Long Short-Term Memory Feed-Forward Neural Network (BiLSTM-FFNN) model to assist tourists in making informed choices. The dataset comprises 9,504 rating matrices obtained from tweet data and reputable web sources. In various experiments, the hybrid BiLSTM-FFNN model demonstrated superior performance, achieving an accuracy of 93.36% following optimization with the Stochastic Gradient Descent (SGD) algorithm at a learning rate of about 0.193. The accuracy, after applying Synthetic Minority Over-sampling Technique (SMOTE) and fine-tuning the learning rate hyperparameter, showed a 14.3% improvement over the baseline model. This research contributes by developing a recommendation system method that integrates CBF and hybrid deep learning with high accuracy and provides a detailed analysis of optimization techniques and hyperparameter tuning.
Genetic Algorithm Optimization of Hybrid LSTM-AutoEncoder in Tourism Recommendation System Sanjaya, Bayu Surya Dharma; Setiawan, Erwin Budi
JURNAL TEKNIK INFORMATIKA Vol. 17 No. 2: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v17i2.39760

Abstract

The tourism industry has rapid growth and has become one of the world's leading economic industries in recent years due to advances in information technology, such as the internet and social media. However, the overwhelming amount of information often makes it difficult for travelers to decide on their preferred travel destination. To address these issues, this research proposes a tourism recommendation system that combines Content-Based Filtering and Hybrid LSTM-AE, which is optimized using Genetic Algorithm (GA). There is no research that has developed a recommendation system using a combination of these methods and optimized using GA. So that this research can contribute to providing personalized recommendations and higher accuracy. The dataset consists of 9,504 ratings collected from the Ministry of Tourism and Creative Economy, Twitter, and web sources. The system was able to achieve a rating prediction accuracy of 96.82% by applying SMOTE to handle data imbalance and implementing a GA approach to the Hybrid LSTM-AE model. Accuracy has increased by 18.7% from the baseline model without using SMOTE and optimization. These results underscore that a strong integration between natural language processing and genetically optimized deep learning provides more accurate recommendations.
Optimizing the Learning Rate Hyperparameter for Hybrid BiLSTM-FFNN Model in a Tourism Recommendation System Mustofa, Aufa Ab'dil; Setiawan, Erwin Budi
JURNAL TEKNIK INFORMATIKA Vol. 17 No. 2: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v17i2.40250

Abstract

Indonesia, with its abundant natural resources, is rich in captivating tourist attractions. Tourism, a vital economic sector, can be significantly influenced by digitalization through social media. However, the overwhelming amount of information available can confuse tourists when selecting suitable destinations. This research aims to develop a tourism recommendation system employing content-based filtering (CBF) and hybrid Bidirectional Long Short-Term Memory Feed-Forward Neural Network (BiLSTM-FFNN) model to assist tourists in making informed choices. The dataset comprises 9,504 rating matrices obtained from tweet data and reputable web sources. In various experiments, the hybrid BiLSTM-FFNN model demonstrated superior performance, achieving an accuracy of 93.36% following optimization with the Stochastic Gradient Descent (SGD) algorithm at a learning rate of about 0.193. The accuracy, after applying Synthetic Minority Over-sampling Technique (SMOTE) and fine-tuning the learning rate hyperparameter, showed a 14.3% improvement over the baseline model. This research contributes by developing a recommendation system method that integrates CBF and hybrid deep learning with high accuracy and provides a detailed analysis of optimization techniques and hyperparameter tuning.
Co-Authors Abdullah, Athallah Zacky Adriana, Kaysa Azzahra Adyatma, I Made Darma Cahya Agung Toto Wibowo Ahmad Zahri Ruhban Adam Aji Reksanegara Aji, Hilman Bayu Alvi Rahmy Royyan Anang Furkon RIfai Anindika Riska Intan Fauzy Annisa Aditsania Annisa Cahya Anggraeni Annisa Cahya Anggraeni Annisa Rahmaniar Dwi Pratiwi Arie Ardiyanti Arki Rifazka Arsytania, Ihsani Hawa Athirah Rifdha Aryani Aufa Ab'dil Mustofa Aydin, Raditya Bagas Teguh Imani Bayu Muhammad Iqbal Bayu Surya Dharma Sanjaya Billy Anthony Christian Martani Bintang Ramadhan, Rifaldy Brenda Irena Brigita Tenggehi Cahyudi, Ridho Maulana Crisanadenta Wintang Kencana Damarsari Cahyo Wilogo Daniar Dwi Pratiwi Daniar Dwi Pratiwi Dede Tarwidi Dedy Handriyadi Dery Anjas Ramadhan Dhinta Darmantoro Diaz Tiyasya Putra Dion Pratama Putra, Dion Pratama Diyas Puspandari Evi Dwi Wahyuni Faadhilah, Adhyasta Naufal Faidh Ilzam Nur Haq Farid, Husnul Khotimah Fathurahman Alhikmah Fathurahman Alhikmah Fazira Ansshory, Azrina Febiana Anistya Feby Ali Dzuhri Fhina Nhita Fhina Nhita Fida Nurmala Nugraha Fikri Maulana, Fikri Firdaus, Dzaki Afin Fitria, Mahrunissa Azmima Fitria Gde Bagus Janardana Abasan, I Ghina Dwi Salsabila Gita Safitri Grace Yohana Grace Yohana Hafiza, Annisaa Alya Hanif Reangga Alhakiem Hildan Fawwaz Naufal Husnul Khotimah Farid I Gusti Ayu Putu Sintha Deviya Yuliani I Kadek Candradinata Ibnu Sina, Muhammad Noer Ilyana Fadhilah Inggit Restu Illahi Inggit Restu Illahi Irma Palupi Isep Mumu Mubaroq Isman Kurniawan Kacaribu, Isabella Vichita Kamil, Ghani Kamil, Nabilla Kartika Prameswari Kemas Muslim Lhaksmana Kevin Usmayadhy Wijaya Khamil, Muhammad Khamil Khoirunnisa, Sanabila Luthfi Firmansah M. Arif Bijaksana Mahmud Imrona Mansel Lorenzo Nugraha Marissa Aflah Syahran Marissa Aflah Syahran Maulina Gustiani Tambunan Mela Mai Anggraini Moh Adi Ikfini M Moh. Hilman Fariz Muhammad Afif Raihan Muhammad Faiq Ardyanto Putro Muhammad Khiyarus Syiam Muhammad Kiko Aulia Reiki Muhammad Nur Ilyas Muhammad Shiba Kabul Muhammad Tsaqif Muhadzdzib Ramadhan Mustofa, Aufa Ab'dil Nabilla Kamil Naufal Adi Nugroho Naufal Razzak , Robith Nilla, Arliyanna Nindya Erlani, Dea Alfatihah Nisa Maulia Azahra Nur Ihsan Putra Munggaran Nuril Adlan , Muhammad Prahasto, Girindra Syukran Putri, Karina Khairunnisa Rafi Anandita Wicaksono Raisa Sianipar Rakhmat Rifaldy Ramadhan, Ananta Ihza Ramadhan, Helmi Sunjaya Ramadhani, Andi Nailul Izzah Ramadhanti, Windy Rayhan Rahmanda Refka Muhammad Furqon Regina Anatasya Rudiyanto Rendo Zenico Riaji, Dwi Hariyansyah Rizki Annas Sholehat Roji Ellandi Saleh, Abd Salsabil, Adinda Arwa Sanjaya, Bayu Surya Dharma Sari Ernawati Saut Sihol Ritonga Septian Nugraha Kudrat Septian Nugraha Kudrat Setiawan, Rizki Tri Shakina Rizkia Siti Inayah Putri Sri Suryani Sri Suryani Sukmawati Dwi Lestari Syafa Fahreza Syafa Fahreza Syahdan Naufal Nur Ihsan Valentino, Nico Wicaksono, Galih Wasis Wida Sofiya Widiarta, I Wayan Abi Widjayanto, Leonardus Adi Widyanto, Jammie Reyhan Wijaya, Kevin Usmayadhy Windy Ramadhanti Yoan Maria Vianny Yuliant Sibaroni Zahwa Dewi Artika Zakaria, Aditya Mahendra ZK Abdurahman Baizal