Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Scientific Journal of Informatics

Feature Expansion with GloVe and Particle Swarm Optimization for Detecting the Credibility of Information on Social Media X with Long Short-Term Memory (LSTM) Famardi Putra Muhammad Raffly Raffly; Erwin Budi Setiawan Setiawan
Scientific Journal of Informatics Vol. 11 No. 3: August 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i3.7839

Abstract

Purpose: This research aims to develop a system for detecting the credibility of information on social media X by classifying tweets as credible or non-credible. Additionally, it seeks to improve the accuracy of classification and prediction of information credibility using feature extraction methods, semantic features, feature expansion, and optimization. Methods: The system is built using a deep learning approach with Long Short-Term Memory (LSTM), Term Frequency-Inverse Document Frequency (TF-IDF), Robustly optimized BERT Approach (RoBERTa), Global Vector (GloVe), and Particle Swarm Optimization (PSO). The dataset consists of 54,766 Indonesian tweets from social media X, focusing on the 2024 General Election and using several keywords such as ‘Pemilu 2024’, ‘Pilpres 2024’, ‘anies baswedan’, ‘Prabowo’, ‘#GanjarPranowo’, and ‘#debatCapres’. Result: The results of this study show that the highest accuracy achieved is 89.09% using LSTM with an 80:20 data split, baseline unigram, RoBERTa, Top1 corpus IndoNews, and PSO of the LSTM model’s hyperparameters, resulting in a highly significant statistical improvement of 0.96% over the baseline model. Novelty: This research contributes to information credibility classification research using RoBERTa to add semantic features and GloVe to expand features by utilizing a built corpus and finding similar words to connect with these expanded features. Additionally, PSO is applied to find the optimal hyperparameters, thereby improving the performance and accuracy of the LSTM classification model.
Hybrid Deep Learning with GloVe and Genetic Algorithm for Sentiment Analysis on X: 2024 Election Fitria, Mahrunissa Azmima Fitria; Setiawan, Erwin Budi
Scientific Journal of Informatics Vol. 11 No. 3: August 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i3.8467

Abstract

Purpose: This research analyzes sentiment on the 2024 Indonesian Presidential Election using  data from X, employing a hybrid CNN-GRU model optimized with a Genetic Algorithm (GA) to improve accuracy and efficiency. It also explores GloVe feature expansion for enhanced sentiment classification, aiming for deeper insights into public opinion through advanced deep learning and optimization techniques. Methods: This research employs a deep learning approach that integrates Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU) models, Term Frequency-Inverse Document Frequency (TF-IDF), Global Vectors (GloVe), and GA. The dataset comprises  62,955 Indonesian tweets focusing on the 2024 General Election using various keywords. Result: The results indicated that the Genetic Algorithm significantly improved model accuracy. The CNN-GRU + GA model achieved 84.72% accuracy for the Top 10 ranking, a 1.94% increase from the base model. In comparison, the GRU-CNN + GA model achieved 84.69% accuracy for the Top 5 ranking, a 2.76% increase from the base model, demonstrating enhanced performance with GA across configurations. Novelty: This research uses a hybrid CNN-GRU model to introduce a novel sentiment analysis approach for the 2024 Indonesian Presidential Election. The model enhances accuracy by combining CNN's spatial feature extraction with GRU's temporal context capture and GloVe's word semantics. Genetic Algorithm optimization further refines performance. Comprehensive pre-processing ensures high-quality data, and focusing on election-specific keywords adds relevance. This study advances sentiment analysis through its innovative hybrid model, feature expansion, and optimization techniques.
Co-Authors Abdullah, Athallah Zacky Adriana, Kaysa Azzahra Agung Toto Wibowo Ahmad Zahri Ruhban Adam Aji Reksanegara Aji, Hilman Bayu Alvi Rahmy Royyan Anang Furkon RIfai Anindika Riska Intan Fauzy Annisa Aditsania Annisa Cahya Anggraeni Annisa Cahya Anggraeni Annisa Rahmaniar Dwi Pratiwi Arie Ardiyanti Arki Rifazka Arsytania, Ihsani Hawa Athirah Rifdha Aryani Aufa Ab'dil Mustofa Aydin, Raditya Bagas Teguh Imani Bayu Muhammad Iqbal Bayu Surya Dharma Sanjaya Billy Anthony Christian Martani Brenda Irena Brigita Tenggehi Crisanadenta Wintang Kencana Damarsari Cahyo Wilogo Daniar Dwi Pratiwi Daniar Dwi Pratiwi Dea Alfatihah Nindya Erlani Dede Tarwidi Dedy Handriyadi Dery Anjas Ramadhan Dhinta Darmantoro Diaz Tiyasya Putra Dion Pratama Putra, Dion Pratama Diyas Puspandari Dwi Hariyansyah Riaji Faidh Ilzam Nur Haq Famardi Putra Muhammad Raffly Raffly Fathurahman Alhikmah Fathurahman Alhikmah Fazira Ansshory, Azrina Febiana Anistya Feby Ali Dzuhri Fhina Nhita Fhina Nhita Fida Nurmala Nugraha Fikri Maulana, Fikri Firdaus, Dzaki Afin Fitria, Mahrunissa Azmima Fitria Gde Bagus Janardana Abasan, I Ghina Dwi Salsabila Gita Safitri Grace Yohana Grace Yohana Hanif Reangga Alhakiem Hildan Fawwaz Naufal Husnul Khotimah Farid I Gusti Ayu Putu Sintha Deviya Yuliani I Kadek Candradinata I Made Darma Cahya Adyatma Ibnu Sina, Muhammad Noer Ilyana Fadhilah Inggit Restu Illahi Irma Palupi Isabella Vichita Kacaribu Isep Mumu Mubaroq Isman Kurniawan Kamil, Ghani Kartika Prameswari Kemas Muslim Lhaksmana Kevin Usmayadhy Wijaya Khoirunnisa, Sanabila Luthfi Firmansah M. Arif Bijaksana Mahmud Imrona Mansel Lorenzo Nugraha Marissa Aflah Syahran Marissa Aflah Syahran Maulina Gustiani Tambunan Mela Mai Anggraini Moh Adi Ikfini M Moh. Hilman Fariz Muhammad Afif Raihan Muhammad Faiq Ardyanto Putro Muhammad Khiyarus Syiam Muhammad Kiko Aulia Reiki Muhammad Nur Ilyas Muhammad Shiba Kabul Muhammad Tsaqif Muhadzdzib Ramadhan Nabilla Kamil Naufal Adi Nugroho Naufal Razzak , Robith Nilla, Arliyanna Nisa Maulia Azahra Nur Ihsan Putra Munggaran Nuril Adlan , Muhammad Prahasto, Girindra Syukran Rafi Anandita Wicaksono Raisa Sianipar Rakhmat Rifaldy Ramadhan, Ananta Ihza Ramadhan, Helmi Sunjaya Rayhan Rahmanda Refka Muhammad Furqon Regina Anatasya Rudiyanto Rendo Zenico Ridho Maulana Cahyudi Rifaldy Bintang Ramadhan Rizki Annas Sholehat Roji Ellandi Salsabil, Adinda Arwa Sari Ernawati Saut Sihol Ritonga Septian Nugraha Kudrat Septian Nugraha Kudrat Setiawan, Rizki Tri Shakina Rizkia Siti Inayah Putri Sri Suryani Sri Suryani Sukmawati Dwi Lestari Syafa Fahreza Syahdan Naufal Nur Ihsan Valentino, Nico Wida Sofiya Widiarta, I Wayan Abi Widjayanto, Leonardus Adi Widyanto, Jammie Reyhan Windy Ramadhanti Yoan Maria Vianny Yuliant Sibaroni Zahwa Dewi Artika Zakaria, Aditya Mahendra ZK Abdurahman Baizal