Claim Missing Document
Check
Articles

Found 3 Documents
Search

Analisis Pengiriman Data Sensor dengan Jaringan Wireless Meggunakan Metode Quality of Service (QoS) Indra Sari Kusuma Wardhana; Bheta Agus Wardjiono
Justek : Jurnal Sains dan Teknologi Vol 5, No 2 (2022): November
Publisher : Unversitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/justek.v%vi%i.11869

Abstract

Abstract:  Hydroponic plants are currently being cultivated, but on a large scale, the Internet of Things approach to hydroponic plant management systems can support and get optimal results. The existing management uses the GSM network to send sensor data to the web database and on some locations that are not covered by the GSM network are often found, thus experiencing problems in sending sensor data to the web database. The purpose of this study is to analyze the performance of a wireless network as an alternative to using GSM networks for sending sensor data, using the Quality of Service method in a hydroponic plant management system using Internet of Things technology. The research method used is to perform a simulation of testing data transmission on a wireless network with the help of the Wireshark application, while the calculations are assisted by Microsoft Excel. The results of the observations show that the performance of the wireless network is good and very good so that it can be used as a substitute for a GSM connection for sending sensor data to a web database.Abstrak: Tanaman hidroponik saat ini sedang marak dibudidayakan, namun untuk skala besar, pendekatan Internet of Things pada system pengelolaan tanaman hidroponik dapat mendukung dan mendapatkan hasil yang optimal. Pengelolaan yang ada menggunakan jaringan GSM untuk mengirimkan data hasil sensor ke webdatabase dan sering ditemukan lokasi yang tidak tercakup jaringan GSM, sehingga mengalami kendala dalam pengiriman data hasil sensor ke web database. Tujuan dari penelitian ini adalah menganalisis performa wireless network sebagai alternative penggunaan jaringan GSM untuk pengiriman data hasil sensor, dengan metode Quality of Service pada sistem pengelolaan tanaman hidroponik dengan menggunakan teknologi Internet of Things. Metode penelitian yang digunakan dengan melakukan simulasi pengujian pengiriman data pada wireless network dengan bantuan aplikasi Wireshark sedangkan perhitungannya dibantu dengan Microsoft Excel. Hasil dari pengamatan menunjukkan bahwa performa wireless network baik dan baik sekali sehingga dapat digunakan sebagai pengganti koneksi GSM untuk pengiriman data hasil sensor ke web database.
Brain Tumor Classification Using Four Versions of EfficientNet Widi Hastomo; Adhitio Satyo Bayangkari Karno; Dody Arif; Indra Sari Kusuma Wardhana; Nada Kamilia; Rudy Yulianto; Aji Digdoyo; Tri Surawan
Insearch: Information System Research Journal Vol 3, No 01 (2023): Insearch (Information System Research) Journal
Publisher : Fakultas Sains dan Teknologi UIN Imam Bonjol Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15548/isrj.v3i01.5810

Abstract

Medical image processing approaches for detecting brain cancers are still primarily done manually, with low accuracy and taking a long period. Furthermore, this task can only be done by professionals with a high degree of medical competence, and the number of experts is obviously restricted in comparison to the large number of patients who need to be treated. With the growth of artificial intelligence and the rapid development of computers in terms of processing speed and storage capacity, it is feasible to assist doctors in classifying the existence of tumors in the head. This study employs four variations of the EfficientNet architecture to train a model on a variety of MRI imaging data. The model version B1 was shown to be the best in this investigation, with 98% accuracy, 99% precision, 95% recall, and 97% f1 score from versions B0 to B3 (4 versions). These results are excellent, but they do not rule out additional study utilizing various forms of design.
DETEKSI COVID-19 IMAGE CHEST X-RAY DENGAN CONVOLUTION NEURAL NETWORK EFFICIENT NET-B7 Adhitio Satyo Bayangkari Karno; Dodi Arif; Indra Sari Kusuma Wardhana
Prosiding Seminar SeNTIK Vol. 5 No. 1 (2021): Prosiding SeNTIK 2021
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Di era pandemi keberadaan para medis dan rumah sakit terhadap jumlah pasien covid sangat tidak seimbang, lembaga kesehatan memerlukan alat bantu untuk tetap dapat memberikan pelayanan kesehatan. Kecerdasan buatan mampu memprediksi data image chest x-ray terhadap pasien penderita covid dan penyakit lainnya. Penelitian ini bermaksud untuk dapat mendeteksi covid-19 daridata image chest x-raymenggunakan Convolution Neural Network (CNN). Operasi yang ringandengan kualitas akurasi sangat baik dari arsitekturEfficienNet-B7 dapat dipergunakan oleh komputer performa tanpa Graphics Processing Unit (GPU).Dataset yang dipergunakan berbentukimage chest x-ray berjumlah 4.000 image, terdiri dari 4 klasifikasi yaitu covid, normal, lung opacity dan viral pneumonia masing-masing dengan jumlah data 1.000 image.Hasil penelitian dengan trainning 50 epoch diperoleh nilai akurasi trainning95,5% , akurasi validasi 91,8% dan akurasi testing 96%. Untuk tiap kelas hasil testing covid (96%) , normal (95%), lung opacity (93%) dan viral pneumonia (98%)