Priya Ranjan
Bhubaneswar Institute of Technology

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Machine learning approaches in the diagnosis of infectious diseases: a review Smriti Mishra; Ranjan Kumar; Sanjay Kumar Tiwari; Priya Ranjan
Bulletin of Electrical Engineering and Informatics Vol 11, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i6.4225

Abstract

Infectious diseases are a group of medical conditions caused by infectious agents such as parasites, bacteria, viruses, or fungus. Patients who are undiagnosed may unwittingly spread the disease to others. Because of the transmission of these agents, epidemics, if not pandemics, are possible. Early detection can help to prevent the spread of an outbreak or put an end to it. Infectious disease prevention, early identification, and management can be aided by machine learning (ML) methods. The implementation of ML algorithms such as logistic regression, support vector machine, Naive Bayes, decision tree, random forest, K-nearest neighbor, artificial neural network, convolutional neural network, and ensemble techniques to automate the process of infectious disease diagnosis is investigated in this study. We examined a number of ML models for tuberculosis (TB), influenza, human immunodeficiency virus (HIV), dengue fever, COVID-19, cystitis, and nonspecific urethritis. Existing models have constraints in data handling concerns such data types, amount, quality, temporality, and availability. Based on the research, ensemble approaches, rather than a typical ML classifier, can be used to improve the overall performance of diagnosis. We highlight the need of having enough diverse data in the database to create a model or representation that closely mimics reality.